Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Molécula no tóxica permite almacenar la radiación de forma segura

Por el equipo editorial de MedImaging en español
Actualizado el 05 May 2014
Print article
Imagen A: John Tomich y su equipo del laboratorio de investigación de la Universidad Estatal de Kansas combinaron dos secuencias relacionadas de aminoácidos para formar una nanocápsula hueca muy pequeña, similar a una burbuja (Fotografía cortesía de la Universidad Estatal de Kansas).
Imagen A: John Tomich y su equipo del laboratorio de investigación de la Universidad Estatal de Kansas combinaron dos secuencias relacionadas de aminoácidos para formar una nanocápsula hueca muy pequeña, similar a una burbuja (Fotografía cortesía de la Universidad Estatal de Kansas).
Imagen B: Las nanocápsulas desarrolladas en la Universidad Estatal de Kansas almacenan de forma segura los nocivos iones secundarios que se liberan durante la radioterapia con partículas alfa (Fotografía cortesía de la Universidad Estatal de Kansas).
Imagen B: Las nanocápsulas desarrolladas en la Universidad Estatal de Kansas almacenan de forma segura los nocivos iones secundarios que se liberan durante la radioterapia con partículas alfa (Fotografía cortesía de la Universidad Estatal de Kansas).
Se ha encontrado que unas burbujas microscópicas sirven como armarios para almacenar de forma segura y eficaz los nocivos isótopos que emiten las radiaciones ionizantes utilizadas para el tratamiento de los tumores.

Estos hallazgos pueden beneficiar la salud de los pacientes y dar lugar a avances en el uso de la radioterapia para tratar el cáncer y otras enfermedades, de acuerdo con John M. Tomich, profesor afiliado de bioquímica y biofísica molecular del Centro Johnson para Investigación del Cáncer de la Universidad Estatal de Kansas (Manhattan, EUA).

El Prof. Tomich realizó el estudio con la Dra. Ekaterina Dadachova, especialista en radioquímica de la Facultad de Medicina Albert Einstein (Nueva York, NY, EUA), junto con investigadores de Japón y Alemania. Recientemente publicaron los hallazgos de su estudio el 22 de febrero de 2014, antes de la impresión, en la revista Biochimica et Biophysica Acta.

El estudio se centra en la capacidad de estas moléculas no tóxicas para almacenar y entregar los radioisótopos potencialmente dañinos de las emisiones alfa, una de las formas más efectivas de radioterapia.

En 2012, el Prof. Tomich y su equipo del laboratorio de investigación combinaron dos secuencias relacionadas de aminoácidos para formar una nanocápsula hueca muy pequeña, similar a una burbuja. “Hemos encontrado que esas dos secuencias se unen para formar una membrana delgada que se ensambla en forma de pequeñas esferas, a las cuales llamamos cápsulas”, dijo el Prof. Tomich. “Si bien se han creado de vesículas otro tipo, a partir de lípidos, la mayoría son mucho menos estables y se desarman. En cambio, las nuestras son como piedras. Son increíblemente estables y no son destruidas por las células del cuerpo”.

La capacidad de estas cápsulas para permanecer intactas manteniendo el isótopo en su interior, sin ser detectadas por los sistemas de depuración del cuerpo, motivó al Prof. Tomich para investigar el uso de dichas cápsulas como recipientes irrompibles para el almacenamiento, que se pudieran utilizar en investigación biomédica, en particular para la radioterapia. “El problema con la radioterapia con partículas alfa, utilizada actualmente para tratar el cáncer, es que conduce a la liberación en el cuerpo de iones radiactivos secundarios no deseados”, dijo el Dr. Tomich. “Los átomos radiactivos se descomponen para formar nuevas partículas atómicas, llamadas iones secundarios, los cuales liberan un cierto tipo de energía y de partículas energizadas. Los emisores alfa liberan una partícula energética que es despedida casi a la velocidad de la luz”.

Estas partículas son como un vehículo que se desliza sobre el hielo, según el profesor Tomich. Son muy poderosos pero sólo pueden viajar distancias cortas. Las partículas alfa destruyen el ADN cuando lo encuentran en su camino y con cualquier tipo de componentes celulares críticos. Del mismo modo, los iones secundarios retroceden con altos niveles de energía luego de la eyección de una partícula alfa, de un modo similar a cómo retrocede un arma de fuego, luego del disparo. Estos iones secundarios tienen suficiente energía para escapar de las moléculas de destino y de contención que actualmente están en uso.

“Una vez liberados, los isótopos secundarios pueden terminar en lugares donde no se desean, como en la médula ósea, lo cual puede conducir a una leucemia y a nuevas afecciones”, dijo el Dr. Tomich. “No queremos la presencia de ningún isótopo sin control, ya que estos pueden dañar el cuerpo. El truco es conseguir que los isótopos radiactivos entren y permanezcan dentro de las células relacionadas con las enfermedades, donde pueden ejercer su efecto mágico”.

El compuesto radiactivo con el cual trabajan ahora los científicos es el Ac225 (actinio), que en su descomposición libera cuatro partículas alfa y numerosos iones secundarios. Los Dres. Tomich y Dadachova analizaron la retención y la distribución en el cuerpo de partículas que emiten radiaciones alfa, encerradas dentro de unas cápsulas de péptidos alojadas en las células. Estas cápsulas ingresan fácilmente a las células y una vez dentro, migran a una posición próxima al núcleo, donde se encuentra el ADN.

Los Dres. Tomich y Dadachova encontraron que a medida que los isótopos emisores de partículas alfa se descomponían, el ion hijo de retroceso choca con las paredes de la cápsula y, esencialmente, rebota entre ellas permaneciendo atrapado en el interior de la cápsula. Esto impide por completo la liberación de los iones secundarios, lo cual impide a su vez la absorción en ciertos tejidos a donde no se dirige el tratamiento y protegen al paciente de las radiaciones nocivas que de otra forma hubieran sido liberadas al cuerpo.

El Dr. Tomich subrayó que se necesitan más estudios para colocar sobre la superficie de estas cápsulas otras moléculas de interés. El prevé que este nuevo método proporcionará una opción más segura para el tratamiento de tumores con radioterapia mediante la reducción de la cantidad de radioisótopo requerido para destruir las células cancerosas y para reducir los efectos secundarios ocasionados por la acumulación de los radioisótopos fuera del objetivo. “Estas cápsulas son fáciles de fabricar y es fácil trabajar con ellas”, dijo el Dr. Tomich. “Creo que sólo estamos arañando la superficie de lo que podemos hacer con ellas para mejorar la salud humana y los nanomateriales”.

Enlaces relacionados:

Kansas State University

Albert Einstein College of Medicine


Miembro Oro
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Oncology Information System
RayCare
Ultrasound Doppler System
Doppler BT-200
New
Ultrasound System
P20 Elite

Print article
Radcal

Canales

RM

ver canal
Imagen: El MRgFUS puede tratar con éxito el cáncer de próstata para aquellos en riesgo intermedio (Fotografía cortesía de 123RF)

Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata

Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más

Ultrasonido

ver canal
Imagen: Un examen de ultrasonido cardíaco que se realiza en un bebé de 7 semanas (Fotografía cortesía de ETH Zurich)

Inteligencia artificial detecta defectos cardíacos en recién nacidos a partir de imágenes de ultrasonido

La hipertensión pulmonar es una afección en la que las arterias que van a los pulmones de un bebé no se abren lo suficiente o no se cierran poco después del nacimiento.... Más

Medicina Nuclear

ver canal
Imagen: PET/CT de un paciente masculino de 60 años con sospecha clínica de cáncer de pulmón (Fotografía cortesía de  EJNMMI Physics)

Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar

Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más

Imaginología General

ver canal
Imagen: El modelo AI ingresa y analiza una imagen de la tomografía de emisión de positrones (PET) (Fotografía cortesía de la Universidad de Chalmers)

Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC

El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.