Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Eventos

28 ene 2019 - 01 feb 2019

Un sistema automatizado identifica el tejido mamario denso

Por el equipo editorial de Medimaging en español
Actualizado el 06 Nov 2018
Print article
Imagen: un algoritmo de inteligencia artificial puede detectar el tejido mamario denso (Fotografía cortesía de MIT).
Imagen: un algoritmo de inteligencia artificial puede detectar el tejido mamario denso (Fotografía cortesía de MIT).
Un modelo automatizado de aprendizaje profundo (AP) puede evaluar el tejido mamario denso en las mamografías de manera tan confiable como los radiólogos expertos, afirma un nuevo estudio.

Desarrollado por investigadores del Instituto Tecnológico de Massachusetts (MIT, Cambridge, MA, EUA) y de la Facultad de Medicina de Harvard (HMS; Boston, MA, EUA), el modelo de AP se basa en una red neuronal convolucional profunda (CNN) entrenada para evaluar el sistema de datos e informes de las imágenes mamarias (BI-RADS), es decir, la densidad mamaria. Por ejemplo, grasa, dispersa, heterogénea y densa, basada en la interpretación experta de 41.479 mamografías de cribado digital obtenidas en 27.684 mujeres desde enero de 2009 hasta mayo de 2011. El algoritmo fue ensayado en un conjunto de pruebas de 8.677 mamografías en 5.741 mujeres.

Además, cinco radiólogos realizaron un estudio de lectura en 500 mamografías seleccionadas al azar del conjunto de prueba. Finalmente, el algoritmo se implementó en la práctica clínica habitual, donde ocho radiólogos revisaron 10.763 mamografías consecutivas evaluadas con el modelo. Se comparó la concordancia en la categoría BI-RADS para tres conjuntos de lecturas: radiólogos en el conjunto de pruebas, radiólogos que trabajan por consenso en el conjunto de estudio del lector y radiólogos en el conjunto de implementación clínica. Las lecturas se compararon en 5.000 muestras de implementación para evaluar la importancia.

Los resultados revelaron que el modelo de AP mostró una buena concordancia con los radiólogos en el conjunto de pruebas, y con los radiólogos en consenso en el conjunto de estudio del lector. Además, hubo muy buena concordancia con los radiólogos en el conjunto de implementación clínica; para la categorización binaria de senos densos o no densos, el radiólogo de interpretación aceptó 10.149 de 10.763 (94%) de las evaluaciones usando el AP. En las cuatro categorías de BI-RADS, el algoritmo de AP fue equivalente a las evaluaciones de los radiólogos en un 90%. El estudio fue publicado el 16 de octubre de 2018 en la revista Radiology.

"La densidad mamaria es un factor de riesgo independiente que impulsa la forma en que nos comunicamos con las mujeres sobre su riesgo de cáncer. Nuestra motivación fue crear una herramienta exacta y consistente que se pueda compartir y utilizar en todos los sistemas de atención de salud", dijo el autor del estudio, el estudiante de doctorado Adam Yala del Laboratorio de Ciencias de la Computación e Inteligencia Artificial (CSAIL) del MIT. "Cuando los radiólogos saquen un examen en sus estaciones de trabajo, verán la calificación asignada del modelo, que luego aceptan o rechazan. Se tarda menos de un segundo por imagen ... [y puede] escalarse de forma fácil y económica en todos los hospitales".

Se calcula que más del 40% de las mujeres tienen tejido mamario denso, que por sí solo aumenta el riesgo de cáncer de mama. Además, el tejido denso puede enmascarar los cánceres en la mamografía, lo que dificulta la detección.

Enlace relacionado:
Instituto Tecnológico de Massachusetts
Facultad de Medicina de Harvard




Print article
Radcal
Italray

Canales

Radiografía

ver canal
Imagen: Un tablero de instrumentos con un detector de pantalla plana revista automáticamente la salud del sistema de RD (Fotografía cortesía de Konica Minolta).

Un tablero de control con pantalla plana analiza el desempeño por región anatómica

Un tablero de control con detector de pantalla plana (FPD) integral para radiografía digital (RD) recolecta y agrega automáticamente los datos de salud y uso del sistema en visiones analíticas potentes.... Más

Medicina Nuclear

ver canal
Imagen: un nuevo estudio sugiere que la WBRT que evita el hipocampo puede preservar la función cognitiva (Fotografía cortesía de Getty Images).

Una técnica nueva de radioterapia cerebral total reduce el riesgo de deterioro neurocognitivo

Según un estudio nuevo, los efectos cognitivos adversos de la radioterapia cerebral total (WBRT, por sus siglas en inglés) se pueden mitigar de manera significativa mediante el uso de una técnica de preservación... Más

TI en Imaginología

ver canal
Imagen: Un simple portal para pacientes almacena imágenes e informes (Fotografía cortesía de Intelerad).

Un portal centrado en los pacientes facilita el acceso a la imagenología directa

Un portal nuevo de imagenología brinda a los pacientes acceso directo a su historial de exámenes, imágenes e informes en cualquier momento y en cualquier lugar. La plataforma de imágenes en la nube... Más

Industria

ver canal
Imagen: El crecimiento continuo del mercado global de equipos de detección y seguimiento de radiación se debe a la creciente demanda de los centros de asistencia sanitaria (Fotografía cortesía de Technavio Research).

El mercado mundial de detección de la radiación está impulsado por la demanda de las instituciones de salud

Se proyecta que el mercado mundial de equipos de detección y seguimiento de la radiación crezca en una TCAC de casi el 6% durante el período 2018-2022, impulsado por la creciente demanda de los centros... Más
Copyright © 2000-2018 Globetech Media. All rights reserved.