Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




La IA predice como los pacientes con CPCNM responderán a la quimioterapia

Por el equipo editorial de MedImaging en español
Actualizado el 01 Apr 2019
Print article
Los investigadores pronto podrán predecir qué pacientes de cáncer de pulmón responderán a la quimioterapia utilizando los datos de la tomografía computarizada (TC). Generalmente, se adopta la quimioterapia basada en platino como el tratamiento de primera línea para el cáncer de pulmón de células no microcítico en estadio avanzado (CPCNM), aunque solo uno de cada cuatro pacientes responde bien a este tratamiento.

Actualmente no hay manera de predecir qué pacientes pueden obtener el mayor beneficio de la quimioterapia. Los exámenes por TAC se utilizan habitualmente para la estadificación del tumor y el seguimiento de la respuesta al tratamiento. Los investigadores usan un campo de estudio llamado radiómica para extraer datos cuantitativos o medibles de las imágenes de la TC que pueden revelar características de la enfermedad que no son visibles en las imágenes únicamente. En el último estudio, los investigadores se centraron en identificar el papel de las características de la textura radiómica, tanto dentro como alrededor del tumor pulmonar, con el fin de predecir el tiempo de progresión y la supervivencia general, así como la respuesta a la quimioterapia en pacientes con CPCNM.

Los investigadores analizaron los datos de 125 pacientes que habían sido tratados con quimioterapia doble de platino basada en pemetrexed. Dividieron al azar a los pacientes en dos conjuntos con un número igual de respondedores y no respondedores en el conjunto de entrenamiento. El conjunto de entrenamiento comprendía 53 pacientes con CPCNM, y el conjunto de validación comprendía 72 pacientes.

Una computadora analizó las imágenes de TC del cáncer de pulmón para identificar patrones únicos de heterogeneidad tanto dentro como fuera del tumor. Luego se compararon estos patrones entre las tomografías computarizadas de pacientes que respondieron y no respondieron a la quimioterapia. Estos patrones de características se utilizaron para entrenar a un clasificador de aprendizaje automático para identificar la probabilidad de que un paciente con cáncer de pulmón respondiera a la quimioterapia. Los resultados mostraron que las características radiómicas derivadas del tumor y el área alrededor del tumor fueron capaces de diferenciar a los pacientes que respondieron a la quimioterapia de los que no lo hicieron. Además, las características radiómicas predijeron el tiempo hasta la progresión y la supervivencia general.

De acuerdo con Mohammadhadi Khorrami, M.S, un candidato a Ph.D., del Departamento de Ingeniería Biomédica de la Escuela de Ingeniería de la Universidad Case Western Reserve en Cleveland, Ohio, quien, junto con Mónica Khunger, M.D, del Departamento de Medicina Interna de la Clínica Cleveland, dirigió el estudio, los datos radiómicos derivados de las imágenes de TC también pueden ayudar a identificar a aquellos pacientes que presentan un riesgo elevado de recurrencia y que podrían beneficiarse de una observación y seguimiento más intensivos.

“Cuando observamos los patrones dentro del tumor, obtuvimos una exactitud de 0,68. Pero cuando miramos dentro y fuera, la exactitud subió a 0,77”, dijo Khorrami. “A pesar de la gran cantidad de estudios en el espacio de la radiómica por TC, el área circundante inmediata del tumor, o la región peritumoral, ha permanecido relativamente sin explorar. Nuestros resultados mostraron una clara evidencia del papel de los patrones de textura peritumoral en la predicción de la respuesta y el tiempo de progresión después de la quimioterapia”.

“Este es el primer estudio que demuestra que los patrones de heterogeneidad o diversidad extraídos por computadora desde fuera del tumor fueron predictivos de la respuesta a la quimioterapia”, dijo la Dra. Khunger. “Esto es muy importante porque podría permitir predecir antes de la terapia qué pacientes con cáncer de pulmón tienen probabilidad de responder o no. Esto, a su vez, podría ayudar a identificar a los pacientes que probablemente no respondan a la quimioterapia y reciban terapias alternativas como la radiación o la inmunoterapia”.

Enlace relacionado:
Departamento de Ingeniería Biomédica de la Escuela de Ingeniería de la Universidad Case Western Reserve
Clínica Cleveland


Multi-Use Ultrasound Table
Clinton
New
Cylindrical Water Scanning System
SunSCAN 3D
Ultrasound Imaging System
P12 Elite
Digital Radiographic System
OMNERA 300M

Print article

Canales

Radiografía

ver canal
Imagen: la evaluación FFR impulsada por IA es comparable a la evaluación convencional (foto cortesía de 123RF)

Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP

La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más

RM

ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más

Ultrasonido

ver canal
Imagen: la herramienta de ultrasonido pulmonar impulsada por IA superó a los expertos humanos en un 9 % en el diagnóstico de tuberculosis (Adobe Stock)

La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis

A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... Más

Medicina Nuclear

ver canal
Imagen: COX-2 en la materia gris cortical humana (foto cortesía de The Journal of Nuclear Medicine; DOI: https://doi.org/10.2967/jnumed.124.268525)

Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación

La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.