Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Deascargar La Aplicación Móvil




Módulo de IA permite la segmentación y procesamiento predictivos de imágenes

Por el equipo editorial de Medimaging en español
Actualizado el 30 Dec 2019
Print article
Imagen: Un conjunto de aplicaciones de microscopía ayuda a la imagenología predictiva, la segmentación y el procesamiento (Fotografía cortesía de Nikon Instruments)
Imagen: Un conjunto de aplicaciones de microscopía ayuda a la imagenología predictiva, la segmentación y el procesamiento (Fotografía cortesía de Nikon Instruments)
Un módulo potente de análisis y procesamiento de imágenes aprovecha el aprendizaje profundo y la inteligencia artificial (IA) para extraer con exactitud datos imparciales de grandes cantidades de conjuntos de datos de microscopía.

El módulo de análisis y procesamiento de imágenes de microscopía NIS.ai de Nikon Instruments (Melville, NY, EUA) es un conjunto de herramientas de procesamiento basadas en inteligencia artificial que utiliza redes neuronales convolucionales (CNN) para aprender a leer imágenes de pequeños conjuntos de datos de capacitación proporcionados por el usuario. Los resultados de la capacitación se pueden aplicar para procesar y analizar grandes volúmenes de datos, lo que permite a los investigadores aumentar el rendimiento y ampliar sus límites de aplicación. El NIS.ai incluye un conjunto de aplicaciones para imagenología predictiva, segmentación y procesamiento de imágenes. Éstas incluyen:

Convert.ai, que aprende patrones relacionados en dos canales de imagenología diferentes. Después del entrenamiento, Convert.ai puede predecir el patrón en el segundo canal, incluso cuando se presenta solo con el primer canal. También se puede entrenar para predecir dónde la coloración fluorescente de núcleos basada en DAPI, un método común para la segmentación y el recuento de células, se podría basar en imágenes de microscopía de contraste de interferencia diferencial (DIC) o de contraste de fase no coloreadas. Esto permite a los usuarios realizar análisis de imágenes basadas en núcleos sin tener que colorear las muestras con DAPI o adquirir un canal fluorescente.

Segment.ai, que permite identificar y segmentar fácilmente estructuras complejas. Las neuritas en las imágenes de contraste de fase son tradicionalmente difíciles de definir mediante el umbral clásico. Segment.ai se puede entrenar en un pequeño subconjunto de neuritas trazadas a mano para detectar y segmentar automáticamente neuritas de miles de conjuntos de datos no rastreados.

Enhance.ai, que permite mejorar las muestras fluorescentes tenues con una baja relación señal/ruido (SNR) al aprender cómo se ve una imagen de alta señal a ruido, a través de un proceso que compara imágenes subexpuestas y óptimamente expuestas. Enhance.ai puede restaurar detalles en imágenes fluorescentes tenues o poco expuestas, lo que permite a los investigadores obtener más información de sus aplicaciones de imágenes de baja señal.

Denoise.ai, que elimina el ruido de disparo de las imágenes confocales resonantes y se puede realizar en tiempo real. La aplicación de Denoise.ai a las imágenes confocales resonantes permite a los usuarios adquirir imágenes confocales a una velocidad ultra alta sin sacrificar la calidad de las imágenes.

“La aplicación de Aprendizaje Profundo e IA a la imagenología biomédica es extremadamente poderosa y abre posibilidades invisibles”, dijo Steve Ross, PhD, director de productos y marketing de Nikon Instruments. “Con NIS.ai, los investigadores pueden aplicar fácilmente el aprendizaje profundo para extraer datos significativos e imparciales de conjuntos de datos grandes y complejos”.

Enlace relacionado:
Nikon Instruments


Print article

Canales

Radiografía

ver canal
Imagen: Un prototipo del dosímetro autónomo para la REM (Fotografía cortesía de la NU)

Dosímetros en miniatura monitorizan de manera autónoma la exposición a la REM

Una plataforma digital inalámbrica de ultra baja potencia a escala milimétrica proporciona dosimetría continua de la radiación electromagnética (REM) para dispositivos de consumo inalámbricos de tiempo controlado.... Más

TI en Imaginología

ver canal
Imagen: El software empresarial uPath proporciona mejores herramientas de patología digital (Fotografía cortesía de Roche).

Un software de patología digital mejora la eficiencia del flujo de trabajo

Una plataforma de software novedosa reduce drásticamente los tiempos de generación de imágenes, integra el análisis automatizado de imágenes y permite un mejor intercambio de casos entre patólogos.... Más

Industria

ver canal
Imagen: AI-Rad Companion Chest CT genera automáticamente informes estandarizados, reproducibles y cuantitativos en formato DICOM SC (Fotografía cortesía de Siemens Healthineers).

Software para la TC de tórax basada en IA de Siemens Healthineers recibe aprobación de la FDA de los EUA

La Administración de Medicamentos y Alimentos de los Estados Unidos (FDA) aprobó tres módulos de AI-Rad Companion Chest CT, un asistente de software inteligente de Siemens Healthineers (Erlangen, Alemania)... Más
Copyright © 2000-2020 Globetech Media. All rights reserved.