Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.

IA e imagenología ayudan en el diagnóstico intraoperatorio de tumores cerebrales

Por el equipo editorial de MedImaging en español
Actualizado el 22 Jan 2020
Print article
Imagen: Localización de infiltración de tumor cerebral metastásico en imágenes de SRH (Fotografía cortesía del MGH)
Imagen: Localización de infiltración de tumor cerebral metastásico en imágenes de SRH (Fotografía cortesía del MGH)
Según un estudio nuevo, un flujo de trabajo que combina imágenes ópticas avanzadas con un algoritmo de inteligencia artificial (IA) puede diagnosticar con exactitud los tumores cerebrales en tiempo real en la sala de operaciones.

Desarrollado en la Universidad de California, San Francisco (UCSF; EUA), la Universidad de Michigan (UM; Ann Arbor, EUA), la Universidad de Columbia (Nueva York, NY, EUA) y otras instituciones, el novedoso flujo de trabajo paralelo combina la histología Raman estimulada (SRH, un método de imagen óptica sin etiquetas) y las redes neuronales convolucionales profundas (CNN) para predecir el diagnóstico en tiempo casi real de manera automatizada. Las CNN, que fueron entrenadas con más de 2,5 millones de imágenes de SRH, construyeron una jerarquía de representaciones de características histológicas reconocibles para ayudar a clasificar las principales clases histopatológicas de tumores cerebrales.

El nuevo flujo de trabajo puede diagnosticar los tumores cerebrales en menos de 150 segundos, un orden de magnitud más rápido que las técnicas de histología convencionales, que demoran entre 20 y 30 minutos. Los autores también probaron prospectivamente el flujo de trabajo en un ensayo clínico de 278 pacientes con tumores cerebrales, que demostró que la exactitud del diagnóstico basado en CNN de las imágenes de SRH (94,6%) fue ligeramente mayor que la interpretación por el patólogo de las imágenes histológicas convencionales (93,9% ) El estudio fue publicado el 6 de enero de 2020 en la revista Nature Medicine.

“Como cirujanos, estamos limitados a actuar sobre lo que podemos ver; esta tecnología nos permite ver lo que de otra manera sería invisible, para mejorar la velocidad y la exactitud en la sala de operaciones, y reducir el riesgo de diagnósticos erróneos”, concluyeron el autor principal, Todd Hollon, MD, de la UM, y sus colegas. “Se puede simplificar el diagnóstico de cáncer intraoperatorio creando una vía complementaria para el diagnóstico de tejidos que es independiente del laboratorio de patología tradicional. Con esta tecnología de imagenología, las operaciones de cáncer son más seguras y efectivas que nunca”.

Enlace relacionado:
Universidad de California, San Francisco
Universidad de Michigan
Universidad de Columbia


Print article
Radcal
CIRS

Canales

RM

ver canal
Imagen: Cápsula articular normal en el receso axilar (A); Rotura de grosor completo del tendón supraespinoso (B) (Fotografía cortesía del AJR)

La resonancia magnética predice la rigidez del hombro en los desgarros del manguito rotador

Según un estudio nuevo, el edema y el grosor de la cápsula articular en el receso axilar, medidos con imágenes de resonancia magnética (RM), pueden ser útiles para predecir el hombro rígido en pacientes... Más

TI en Imaginología

ver canal
Imagen: El software empresarial uPath proporciona mejores herramientas de patología digital (Fotografía cortesía de Roche).

Un software de patología digital mejora la eficiencia del flujo de trabajo

Una plataforma de software novedosa reduce drásticamente los tiempos de generación de imágenes, integra el análisis automatizado de imágenes y permite un mejor intercambio de casos entre patólogos.... Más

Industria

ver canal
Imagen: AI-Rad Companion Chest CT genera automáticamente informes estandarizados, reproducibles y cuantitativos en formato DICOM SC (Fotografía cortesía de Siemens Healthineers).

Software para la TC de tórax basada en IA de Siemens Healthineers recibe aprobación de la FDA de los EUA

La Administración de Medicamentos y Alimentos de los Estados Unidos (FDA) aprobó tres módulos de AI-Rad Companion Chest CT, un asistente de software inteligente de Siemens Healthineers (Erlangen, Alemania)... Más
Copyright © 2000-2020 Globetech Media. All rights reserved.