Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Algoritmo de IA para la TC categoriza el riesgo de cáncer de los nódulos pulmonares

Por el equipo editorial de MedImaging en español
Actualizado el 19 May 2020
Imagen: Nódulos pulmonares indeterminados en una TC de pulmón (Fotografía cortesía de Optellum)
Imagen: Nódulos pulmonares indeterminados en una TC de pulmón (Fotografía cortesía de Optellum)
Un estudio nuevo indica que una estrategia de inteligencia artificial (IA) puede evaluar y clasificar correctamente los nódulos pulmonares indeterminados sospechosos (NPI).

Desarrollada en la Universidad de Vanderbilt (Nashville, TN, EUA), Optellum (Oxford, Reino Unido) y otras instituciones, el modelo de red neuronal convolucional de predicción de cáncer de pulmón (LCP-CNN) fue entrenado inicialmente usando imágenes de tomografía computarizada (TC) de NPI del Ensayo de Cribado Nacional del Pulmón (NLST) de EUA, validadas internamente y probadas externamente en cohortes de dos instituciones académicas. Luego, los investigadores compararon el LCP-CNN con los modelos tradicionales de predicción de riesgo en un conjunto de datos muy grande de 15.693 nódulos.

Los resultados mostraron que el modelo de riesgo de IA se asoció con una mayor exactitud para el cálculo del riesgo de enfermedad previsto en cada umbral de manejo de la terapia, así como en las cohortes de validación externa. En comparación con los modelos de riesgo convencionales utilizados actualmente, el algoritmo LCP-CNN reclasificó los NPI en categorías de bajo o alto riesgo en más de un tercio de los cánceres y de los nódulos benignos. El estudio fue publicado el 24 de abril de 2020 en la revista American Journal of Respiratory and Critical Care Medicine.

“La gestión de NPI sigue siendo un desafío, y se necesitan estrategias para disminuir la tasa de procedimientos invasivos innecesarios y optimizar los regímenes de vigilancia”, concluyeron el autor principal, profesor Pierre Massion, MD, de la Universidad de Vanderbilt, y sus colegas. “Este estudio demuestra que este algoritmo de aprendizaje profundo puede reclasificar correctamente los NPI en categorías de bajo o alto riesgo, reduciendo potencialmente la cantidad de procedimientos invasivos innecesarios y demoras en el diagnóstico”.

El aprendizaje profundo es parte de una familia más amplia de métodos de aprendizaje automático de IA que utilizan representaciones de datos, en lugar de algoritmos específicos de tareas. Involucra algoritmos CNN que ejecutan una cascada de muchas capas de unidades de procesamiento no lineales para permitir la extracción, conversión y transformación de características. Cada capa sucesiva utiliza la salida de la capa anterior como entrada para formar una representación jerárquica.

Enlace relacionado:
Universidad de Vanderbilt
Optellum

New
Diagnostic Ultrasound System
DC-80A
Portable Color Doppler Ultrasound Scanner
DCU10
Wall Fixtures
MRI SERIES
Radiology Software
DxWorks

Canales

RM

ver canal
Imagen: los investigadores utilizaron RM y pantalones inspirados en la NASA para mejorar las pruebas de esfuerzo y revelar problemas cardíacos ocultos (foto cortesía de UTA)

Nueva técnica de resonancia magnética revela problemas cardíacos ocultos

Las pruebas de esfuerzo tradicionales, realizadas en una máquina de resonancia magnética (RM), requieren que los pacientes permanezcan acostados, una posición que mejora artificialmente... Más

Ultrasonido

ver canal
Imagen: el ultrasonido focalizado puede detener el crecimiento de lesiones cerebrales debilitantes (Foto cortesía de Nature Biomedical Engineering; doi.org/10.1038/s41551-025-01390-z)

Nueva técnica sin incisiones detiene el crecimiento de lesiones cerebrales debilitantes

Las malformaciones cavernosas cerebrales (MCC), también conocidas como cavernomas, son agrupaciones anómalas de vasos sanguíneos que pueden formarse en el cerebro, la médula... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.