Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




El algoritmo de aprendizaje profundo basado en TC diferencia con precisión las fracturas vertebrales benignas de las malignas

Por el equipo editorial de MedImaging en español
Actualizado el 18 Apr 2024
Print article
Imagen: ilustración ejemplar del proceso de etiquetado y segmentación (foto cortesía de TUM)
Imagen: ilustración ejemplar del proceso de etiquetado y segmentación (foto cortesía de TUM)

Se espera que el aumento de la población que envejece dé como resultado un aumento correspondiente en la prevalencia de fracturas vertebrales que pueden causar dolor de espalda o compromiso neurológico, lo que lleva a un deterioro de la función o discapacidad. Clínicamente, las fracturas vertebrales benignas y malignas no se distinguen porque normalmente ocurren sin un traumatismo adecuado. La tomografía computarizada desempeña un papel clave a la hora de distinguir entre fracturas vertebrales benignas y malignas debido a la amplia disponibilidad de la tecnología y su capacidad para representar líneas de fractura en diferentes planos reconstruidos. Sin embargo, distinguir entre fracturas vertebrales benignas y malignas sigue siendo un desafío con la TC sola. Ahora, un nuevo estudio ha demostrado que los modelos de aprendizaje profundo basados en TC pueden discriminar eficazmente las fracturas vertebrales benignas de las malignas. El estudio encontró que los modelos funcionaron mejor o similar que los residentes de radiología y tan buenos como los de un radiólogo capacitado.

En el estudio, investigadores de la Universidad Técnica de Múnich (TUM, Múnich, Alemania) examinaron si los modelos de aprendizaje profundo basados en TC podían diferenciar de forma fiable entre fracturas vertebrales benignas y malignas. El estudio identificó retrospectivamente tomografías computarizadas obtenidas entre junio de 2005 y diciembre de 2022 de pacientes con fracturas vertebrales benignas o malignas según un estándar de referencia compuesto que incluía información histopatológica y radiológica. Los investigadores seleccionaron al azar un conjunto de pruebas internas y obtuvieron un conjunto de pruebas externas de otro hospital.

Los modelos de aprendizaje profundo basados en CT utilizaron una arquitectura de codificador-clasificador tridimensional U-Net y aplicaron aumento de datos durante el entrenamiento. Los investigadores evaluaron el rendimiento de los modelos utilizando el área bajo la curva característica operativa del receptor (AUC) y lo compararon con el de dos residentes y un radiólogo capacitado utilizando la prueba DeLong. El estudio reveló que los modelos desarrollados tenían un alto poder discriminatorio para diferenciar entre fracturas vertebrales benignas y malignas. Su desempeño superó o igualó al de los residentes de radiología e igualó al de un radiólogo capacitado.

Enlaces relacionados:
tum

Miembro Oro
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
PACS Workstation
CHILI Web Viewer
New
Illuminator
Trimline Basic
New
Mobile Digital C-arm X-Ray System
HHMC-200D

Print article

Canales

Radiografía

ver canal
Imagen: La detección de cáncer de seno asistido por AI puede reducir las pruebas innecesarias (foto cortesía de Wustl)

Asistencia de IA mejora detección del cáncer de mama al reducir los falsos positivos

Radiólogos suelen detectar un caso de cáncer por cada 200 mamografías revisadas. Sin embargo, estas evaluaciones a menudo dan como resultado falsos positivos, lo que lleva a retiros... Más

RM

ver canal
Imagen: PET/MRI puede clasificar con precisión a los pacientes con cáncer de próstata (foto cortesía de 123RF)

PET/MRI mejora la precisión diagnóstica en pacientes con cáncer de próstata

El Sistema de datos e informes de imágenes de próstata (PI-RADS) es una escala de cinco puntos para evaluar el potencial de cáncer de próstata en imágenes de resonancia... Más

Ultrasonido

ver canal
Imagen: Diagrama esquemático del sistema de administración de fármacos de nanopartículas estimulados por ultrasonido para la terapia de biopelícula (foto cortesía de BIO Integration))

Nueva nanopartícula activada por ultrasonido elimina la biopelícula y la infección bacteriana

Las biopelículas, formadas por bacterias que se agregan en densas comunidades para protegerse contra las duras condiciones ambientales, contribuyen de manera importante a diversas enfermedades infecciosas.... Más

Medicina Nuclear

ver canal
Imagen: El sistema de IA utiliza imágenes de gammagrafía para el diagnóstico temprano de amiloidosis cardíaca (Fotografía cortesía de 123RF)

Sistema de IA detecta de forma automática y confiable amiloidosis cardíaca mediante imágenes de gammagrafía

La amiloidosis cardíaca, una afección caracterizada por la acumulación de depósitos anormales de proteínas (amiloide) en el músculo cardíaco, afecta gravemente... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.