Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




El algoritmo de aprendizaje profundo basado en TC diferencia con precisión las fracturas vertebrales benignas de las malignas

Por el equipo editorial de MedImaging en español
Actualizado el 18 Apr 2024
Imagen: ilustración ejemplar del proceso de etiquetado y segmentación (foto cortesía de TUM)
Imagen: ilustración ejemplar del proceso de etiquetado y segmentación (foto cortesía de TUM)

Se espera que el aumento de la población que envejece dé como resultado un aumento correspondiente en la prevalencia de fracturas vertebrales que pueden causar dolor de espalda o compromiso neurológico, lo que lleva a un deterioro de la función o discapacidad. Clínicamente, las fracturas vertebrales benignas y malignas no se distinguen porque normalmente ocurren sin un traumatismo adecuado. La tomografía computarizada desempeña un papel clave a la hora de distinguir entre fracturas vertebrales benignas y malignas debido a la amplia disponibilidad de la tecnología y su capacidad para representar líneas de fractura en diferentes planos reconstruidos. Sin embargo, distinguir entre fracturas vertebrales benignas y malignas sigue siendo un desafío con la TC sola. Ahora, un nuevo estudio ha demostrado que los modelos de aprendizaje profundo basados en TC pueden discriminar eficazmente las fracturas vertebrales benignas de las malignas. El estudio encontró que los modelos funcionaron mejor o similar que los residentes de radiología y tan buenos como los de un radiólogo capacitado.

En el estudio, investigadores de la Universidad Técnica de Múnich (TUM, Múnich, Alemania) examinaron si los modelos de aprendizaje profundo basados en TC podían diferenciar de forma fiable entre fracturas vertebrales benignas y malignas. El estudio identificó retrospectivamente tomografías computarizadas obtenidas entre junio de 2005 y diciembre de 2022 de pacientes con fracturas vertebrales benignas o malignas según un estándar de referencia compuesto que incluía información histopatológica y radiológica. Los investigadores seleccionaron al azar un conjunto de pruebas internas y obtuvieron un conjunto de pruebas externas de otro hospital.

Los modelos de aprendizaje profundo basados en CT utilizaron una arquitectura de codificador-clasificador tridimensional U-Net y aplicaron aumento de datos durante el entrenamiento. Los investigadores evaluaron el rendimiento de los modelos utilizando el área bajo la curva característica operativa del receptor (AUC) y lo compararon con el de dos residentes y un radiólogo capacitado utilizando la prueba DeLong. El estudio reveló que los modelos desarrollados tenían un alto poder discriminatorio para diferenciar entre fracturas vertebrales benignas y malignas. Su desempeño superó o igualó al de los residentes de radiología e igualó al de un radiólogo capacitado.

Enlaces relacionados:
tum

40/80-Slice CT System
uCT 528
New
Half Apron
Demi
Pocket Fetal Doppler
CONTEC10C/CL
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices

Canales

Radiografía

ver canal
Imagen: un algoritmo de aprendizaje profundo detecta los niveles de calcio en la arteria coronaria en tomografías computarizadas de tórax (foto cortesía de Adobe Stock)

IA detecta enfermedades cardíacas ocultas en TC de tórax existentes

El calcio en la arteria coronaria (CAC) es un indicador importante del riesgo cardiovascular, pero su evaluación suele requerir una tomografía computarizada (TC) especializada (gated) que... Más

RM

ver canal
Imagen: los investigadores utilizaron RM y pantalones inspirados en la NASA para mejorar las pruebas de esfuerzo y revelar problemas cardíacos ocultos (foto cortesía de UTA)

Nueva técnica de resonancia magnética revela problemas cardíacos ocultos

Las pruebas de esfuerzo tradicionales, realizadas en una máquina de resonancia magnética (RM), requieren que los pacientes permanezcan acostados, una posición que mejora artificialmente... Más

Ultrasonido

ver canal
Imagen: el nuevo dispositivo implantable para el tratamiento del dolor crónico es pequeño y flexible (foto cortesía de The Zhou Lab at USC)

Dispositivo inalámbrico para el manejo del dolor crónico reduce la necesidad de analgésicos y cirugía

El dolor crónico afecta a millones de personas en todo el mundo, lo que a menudo provoca discapacidad a largo plazo y dependencia de opioides, los cuales conllevan riesgos importantes de efectos... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.