Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Liberan enorme base de datos de imágenes de TC para pruebas con IA

Por el equipo editorial de MedImaging en español
Actualizado el 06 Aug 2018
El Centro Clínico de los Institutos Nacionales de la Salud (NIH, Bethesda, MA, EUA) ha puesto a disposición del público un conjunto de datos a gran escala de imágenes de TC para ayudar a la comunidad científica a mejorar la exactitud de detección de las lesiones. El conjunto de datos, llamado DeepLesion, tiene más de 32.000 lesiones anotadas, identificadas en las imágenes de TC, en comparación con menos de mil lesiones en la mayoría de los conjuntos de datos de imágenes médicas disponibles públicamente. Las imágenes son de 4.400 pacientes únicos, que son socios de investigación en los NIH y han sido completamente anónimos. En 2017, el centro clínico de los NIH publicó imágenes anónimas de rayos X de tórax y sus datos correspondientes.

El centro clínico de los NIH es el hospital de investigación clínica para los NIH, la agencia de investigación médica de los EUA, que incluye 27 institutos y centros y es un componente del Departamento de Salud y Servicios Humanos de los EUA Los NIH son la principal agencia federal que realiza y respalda la investigación médica básica, clínica y traslacional e investiga las causas, los tratamientos y las curas de las enfermedades tanto comunes como raras.

Los radiólogos en el centro clínico usan una herramienta de señal electrónica para medir y marcar los hallazgos clínicamente significativos de las imágenes de TC de los pacientes. Los radiólogos guardan el sitio encontrado y marcan los hallazgos significativos, que pueden visitar nuevamente en otro momento. Estos marcadores complejos proporcionan flechas, líneas, diámetros y texto que permiten identificar la ubicación precisa y el tamaño de una lesión para facilitar que los expertos identifiquen el crecimiento o una nueva enfermedad.

Los científicos en el centro clínico de los NIH han utilizado estos marcadores, que son abundantes con datos médicos retrospectivos, para desarrollar el conjunto de datos DeepLesion. A diferencia de la mayoría de los conjuntos de datos de imágenes médicas de lesiones disponibles actualmente que solo pueden detectar un tipo de lesión, DeepLesion ofrece una mayor diversidad ya que contiene todo tipo de hallazgos de radiología crítica de todo el cuerpo, como nódulos pulmonares, tumores hepáticos, ganglios linfáticos agrandados y otros. El conjunto de datos publicado por los NIH es lo suficientemente grande como para formar una red neuronal profunda y podría permitir a la comunidad científica crear un detector de lesiones universales a gran escala con un marco unificado.

Los investigadores esperan que al hacer públicos los conjuntos de datos de imágenes médicas, otros puedan desarrollar un detector de lesiones universal que ayudará a los radiólogos a identificar todo tipo de lesiones. También puede servir como una herramienta de detección inicial y enviar sus resultados de detección a otros sistemas especializados entrenados en ciertos tipos de lesiones. DeepLesion también podría ayudar a los radiólogos a extraer y estudiar la relación entre los diferentes tipos de lesiones con el fin de hacer nuevos descubrimientos. Puede permitirles medir de forma más exacta y automática los tamaños de todas las lesiones en un paciente, lo que permite la evaluación completa del cáncer.

El centro clínico NIH planea continuar mejorando el conjunto de datos DeepLesion al recopilar más datos y aumentar aún más su exactitud de detección. Su capacidad universal de detección de lesiones se volverá más confiable luego de que los investigadores logren aprovechar la información en 3D y del tipo de lesiones. En el futuro, la aplicación DeepLesion podría ampliarse a otras modalidades de imagenología como la resonancia magnética y combinarse con datos de varios hospitales.

Breast Localization System
MAMMOREP LOOP
New
Digital Color Doppler Ultrasound System
MS22Plus
High-Precision QA Tool
DEXA Phantom
Ultrasound Table
Women’s Ultrasound EA Table

Canales

Radiografía

ver canal
Imagen: la AI evalúa las mamografías mejor que los radiólogos (foto cortesía de la Universidad de Radboud)

Estrategia híbrida con IA mejora la interpretación de mamografías

Los programas de detección del cáncer de mama dependen en gran medida de la interpretación de las mamografías por parte de radiólogos, un proceso que requiere mucho tiempo... Más

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: la herramienta de diagnóstico podría mejorar las decisiones de diagnóstico y tratamiento para pacientes con infecciones pulmonares crónicas (foto cortesía de SNMMI)

Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar

Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más

Imaginología General

ver canal
Imagen: un modelo de aprendizaje profundo basado en parches con un conjunto de datos de entrenamiento limitado para la segmentación de tumores hepáticos en TC con contraste (Yang et al. (2025), IEEE Access, 10.1109/Access.2025.3570728)

Modelo de IA segmenta con precisión tumores hepáticos a partir de tomografías computarizadas

El cáncer de hígado es el sexto tipo de cáncer más común en el mundo y una de las principales causas de muerte por cáncer. La segmentación precisa de los tumores hepáticos es crucial para el diagnóstico... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.