Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Liberan enorme base de datos de imágenes de TC para pruebas con IA

Por el equipo editorial de MedImaging en español
Actualizado el 06 Aug 2018
El Centro Clínico de los Institutos Nacionales de la Salud (NIH, Bethesda, MA, EUA) ha puesto a disposición del público un conjunto de datos a gran escala de imágenes de TC para ayudar a la comunidad científica a mejorar la exactitud de detección de las lesiones. El conjunto de datos, llamado DeepLesion, tiene más de 32.000 lesiones anotadas, identificadas en las imágenes de TC, en comparación con menos de mil lesiones en la mayoría de los conjuntos de datos de imágenes médicas disponibles públicamente. Las imágenes son de 4.400 pacientes únicos, que son socios de investigación en los NIH y han sido completamente anónimos. En 2017, el centro clínico de los NIH publicó imágenes anónimas de rayos X de tórax y sus datos correspondientes.

El centro clínico de los NIH es el hospital de investigación clínica para los NIH, la agencia de investigación médica de los EUA, que incluye 27 institutos y centros y es un componente del Departamento de Salud y Servicios Humanos de los EUA Los NIH son la principal agencia federal que realiza y respalda la investigación médica básica, clínica y traslacional e investiga las causas, los tratamientos y las curas de las enfermedades tanto comunes como raras.

Los radiólogos en el centro clínico usan una herramienta de señal electrónica para medir y marcar los hallazgos clínicamente significativos de las imágenes de TC de los pacientes. Los radiólogos guardan el sitio encontrado y marcan los hallazgos significativos, que pueden visitar nuevamente en otro momento. Estos marcadores complejos proporcionan flechas, líneas, diámetros y texto que permiten identificar la ubicación precisa y el tamaño de una lesión para facilitar que los expertos identifiquen el crecimiento o una nueva enfermedad.

Los científicos en el centro clínico de los NIH han utilizado estos marcadores, que son abundantes con datos médicos retrospectivos, para desarrollar el conjunto de datos DeepLesion. A diferencia de la mayoría de los conjuntos de datos de imágenes médicas de lesiones disponibles actualmente que solo pueden detectar un tipo de lesión, DeepLesion ofrece una mayor diversidad ya que contiene todo tipo de hallazgos de radiología crítica de todo el cuerpo, como nódulos pulmonares, tumores hepáticos, ganglios linfáticos agrandados y otros. El conjunto de datos publicado por los NIH es lo suficientemente grande como para formar una red neuronal profunda y podría permitir a la comunidad científica crear un detector de lesiones universales a gran escala con un marco unificado.

Los investigadores esperan que al hacer públicos los conjuntos de datos de imágenes médicas, otros puedan desarrollar un detector de lesiones universal que ayudará a los radiólogos a identificar todo tipo de lesiones. También puede servir como una herramienta de detección inicial y enviar sus resultados de detección a otros sistemas especializados entrenados en ciertos tipos de lesiones. DeepLesion también podría ayudar a los radiólogos a extraer y estudiar la relación entre los diferentes tipos de lesiones con el fin de hacer nuevos descubrimientos. Puede permitirles medir de forma más exacta y automática los tamaños de todas las lesiones en un paciente, lo que permite la evaluación completa del cáncer.

El centro clínico NIH planea continuar mejorando el conjunto de datos DeepLesion al recopilar más datos y aumentar aún más su exactitud de detección. Su capacidad universal de detección de lesiones se volverá más confiable luego de que los investigadores logren aprovechar la información en 3D y del tipo de lesiones. En el futuro, la aplicación DeepLesion podría ampliarse a otras modalidades de imagenología como la resonancia magnética y combinarse con datos de varios hospitales.

X-ray Diagnostic System
FDX Visionary-A
New
Digital Intelligent Ferromagnetic Detector
Digital Ferromagnetic Detector
Digital X-Ray Detector Panel
Acuity G4
Portable X-ray Unit
AJEX140H

Canales

RM

ver canal
Imagen: los investigadores utilizaron RM y pantalones inspirados en la NASA para mejorar las pruebas de esfuerzo y revelar problemas cardíacos ocultos (foto cortesía de UTA)

Nueva técnica de resonancia magnética revela problemas cardíacos ocultos

Las pruebas de esfuerzo tradicionales, realizadas en una máquina de resonancia magnética (RM), requieren que los pacientes permanezcan acostados, una posición que mejora artificialmente... Más

Ultrasonido

ver canal
Imagen: el ultrasonido focalizado puede detener el crecimiento de lesiones cerebrales debilitantes (Foto cortesía de Nature Biomedical Engineering; doi.org/10.1038/s41551-025-01390-z)

Nueva técnica sin incisiones detiene el crecimiento de lesiones cerebrales debilitantes

Las malformaciones cavernosas cerebrales (MCC), también conocidas como cavernomas, son agrupaciones anómalas de vasos sanguíneos que pueden formarse en el cerebro, la médula... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

Imaginología General

ver canal
Imagen: El cinturón de TC por ultrasonido podría facilitar el seguimiento de pacientes con afecciones cardíacas y pulmonares (foto cortesía de la Universidad de Bath)

Dispositivo portátil pionero ofrece una alternativa revolucionaria a las tomografías computarizadas

Actualmente, los pacientes con afecciones como insuficiencia cardíaca, neumonía o dificultad respiratoria suelen requerir múltiples procedimientos de diagnóstico por imagen... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.