Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




Liberan enorme base de datos de imágenes de TC para pruebas con IA

Por el equipo editorial de MedImaging en español
Actualizado el 06 Aug 2018
El Centro Clínico de los Institutos Nacionales de la Salud (NIH, Bethesda, MA, EUA) ha puesto a disposición del público un conjunto de datos a gran escala de imágenes de TC para ayudar a la comunidad científica a mejorar la exactitud de detección de las lesiones. El conjunto de datos, llamado DeepLesion, tiene más de 32.000 lesiones anotadas, identificadas en las imágenes de TC, en comparación con menos de mil lesiones en la mayoría de los conjuntos de datos de imágenes médicas disponibles públicamente. Las imágenes son de 4.400 pacientes únicos, que son socios de investigación en los NIH y han sido completamente anónimos. En 2017, el centro clínico de los NIH publicó imágenes anónimas de rayos X de tórax y sus datos correspondientes.

El centro clínico de los NIH es el hospital de investigación clínica para los NIH, la agencia de investigación médica de los EUA, que incluye 27 institutos y centros y es un componente del Departamento de Salud y Servicios Humanos de los EUA Los NIH son la principal agencia federal que realiza y respalda la investigación médica básica, clínica y traslacional e investiga las causas, los tratamientos y las curas de las enfermedades tanto comunes como raras.

Los radiólogos en el centro clínico usan una herramienta de señal electrónica para medir y marcar los hallazgos clínicamente significativos de las imágenes de TC de los pacientes. Los radiólogos guardan el sitio encontrado y marcan los hallazgos significativos, que pueden visitar nuevamente en otro momento. Estos marcadores complejos proporcionan flechas, líneas, diámetros y texto que permiten identificar la ubicación precisa y el tamaño de una lesión para facilitar que los expertos identifiquen el crecimiento o una nueva enfermedad.

Los científicos en el centro clínico de los NIH han utilizado estos marcadores, que son abundantes con datos médicos retrospectivos, para desarrollar el conjunto de datos DeepLesion. A diferencia de la mayoría de los conjuntos de datos de imágenes médicas de lesiones disponibles actualmente que solo pueden detectar un tipo de lesión, DeepLesion ofrece una mayor diversidad ya que contiene todo tipo de hallazgos de radiología crítica de todo el cuerpo, como nódulos pulmonares, tumores hepáticos, ganglios linfáticos agrandados y otros. El conjunto de datos publicado por los NIH es lo suficientemente grande como para formar una red neuronal profunda y podría permitir a la comunidad científica crear un detector de lesiones universales a gran escala con un marco unificado.

Los investigadores esperan que al hacer públicos los conjuntos de datos de imágenes médicas, otros puedan desarrollar un detector de lesiones universal que ayudará a los radiólogos a identificar todo tipo de lesiones. También puede servir como una herramienta de detección inicial y enviar sus resultados de detección a otros sistemas especializados entrenados en ciertos tipos de lesiones. DeepLesion también podría ayudar a los radiólogos a extraer y estudiar la relación entre los diferentes tipos de lesiones con el fin de hacer nuevos descubrimientos. Puede permitirles medir de forma más exacta y automática los tamaños de todas las lesiones en un paciente, lo que permite la evaluación completa del cáncer.

El centro clínico NIH planea continuar mejorando el conjunto de datos DeepLesion al recopilar más datos y aumentar aún más su exactitud de detección. Su capacidad universal de detección de lesiones se volverá más confiable luego de que los investigadores logren aprovechar la información en 3D y del tipo de lesiones. En el futuro, la aplicación DeepLesion podría ampliarse a otras modalidades de imagenología como la resonancia magnética y combinarse con datos de varios hospitales.

High-Precision QA Tool
DEXA Phantom
Computed Tomography System
Aquilion ONE / INSIGHT Edition
Digital Intelligent Ferromagnetic Detector
Digital Ferromagnetic Detector
Ultrasonic Pocket Doppler
SD1

Canales

Radiografía

ver canal
Imagen: el nuevo método de imágenes de rayos X capaz de producir imágenes de múltiples contrastes fue desarrollado por los investigadores Mini Das y Jingcheng Yuan (Fotografía cortesía de la Universidad de Houston)

Avance en rayos X captura tres tipos de contraste de imagen en una sola toma

La detección de cáncer en etapas tempranas o cambios sutiles en las capas profundas de los tejidos ha sido un desafío para los sistemas de rayos X convencionales, que dependen únicamente... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.