Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Un método basado en la IA reduce los falsos positivos en la mamografía

Por el equipo editorial de MedImaging en español
Actualizado el 24 Oct 2018
Un equipo de investigadores de la Universidad de Pittsburgh (Pittsburgh, PA, EUA) ha desarrollado un método de inteligencia artificial (IA) basado en una red neuronal convolucional de aprendizaje profundo (CNN, por sus siglas en inglés) que podría identificar características de imágenes mamográficas matizadas específicas en las pacientes a quienes se le solicitó una segunda mamografía, pero que muestran resultados benignos (falsas positivas) y diferenciar dichas mamografías de aquellas identificadas como malignas o negativas.

Los investigadores realizaron un estudio para determinar si se podría aplicar un aprendizaje profundo para analizar un gran conjunto de mamografías con el fin de distinguir imágenes de mujeres con un diagnóstico maligno, imágenes de mujeres a quienes se les hizo una segunda mamografía y que luego se determinó que tenían lesiones benignas y las imágenes de mujeres que se determinó que estaban libres de cáncer de mama en el momento del examen.

Los investigadores utilizaron un total de 14.860 imágenes de 3.715 pacientes de dos conjuntos de datos de mamografía independientes, el conjunto de datos de mamografía digital de campo completo (FFDM - 1.303 pacientes) y el conjunto de datos digitales de mamografía (DDSM - 2.412 pacientes). Construyeron modelos de CNN y utilizaron métodos de entrenamiento de modelos mejorados para investigar seis escenarios de clasificación que ayudarían a diferenciar las imágenes de las mamografías benignas, las malignas y las que requieren un segundo examen. Al combinar los conjuntos de datos de FFDM y DDSM, el área bajo la curva (AUC) para diferenciar las imágenes benignas, las malignas y las benignas en un segundo examen varió de 0,76 a 0,91. Cuanto más alto es el AUC, mejor será el desempeño, con un máximo de 1, según Shandong Wu, PhD, profesor asistente de radiología, informática biomédica, bioingeniería, sistemas inteligentes y ciencias clínicas y de traducción, y director de Computación Inteligente para el Laboratorio de Imagenología Clínica en el Departamento de Radiología de la Universidad de Pittsburgh, Pennsylvania.

"Demostramos que hay características de imágenes únicas para las imágenes benignas en segunda instancia que el aprendizaje profundo puede identificar y potencialmente ayudar a los radiólogos a tomar mejores decisiones sobre si una paciente debe ser examinada nuevamente o es más probable que sea un resultado falso positivo", dijo Wu. "Basados en la capacidad constante de nuestro algoritmo para discriminar todas las categorías de imágenes de mamografía, nuestros hallazgos indican que efectivamente existen algunas características distintivas únicas de las imágenes en que se solicita un segundo examen innecesariamente. Nuestros modelos de IA pueden complementar a los radiólogos en la lectura de estas imágenes y, en última instancia, beneficiar a las pacientes ayudando a reducir las solicitudes innecesarias para un segundo examen".


Enlace relacionado:
Universidad de Pittsburgh


New
Mammography System (Analog)
MAM VENUS
Portable X-ray Unit
AJEX140H
X-Ray Illuminator
X-Ray Viewbox Illuminators
X-ray Diagnostic System
FDX Visionary-A

Canales

RM

ver canal
Imagen: los investigadores utilizaron RM y pantalones inspirados en la NASA para mejorar las pruebas de esfuerzo y revelar problemas cardíacos ocultos (foto cortesía de UTA)

Nueva técnica de resonancia magnética revela problemas cardíacos ocultos

Las pruebas de esfuerzo tradicionales, realizadas en una máquina de resonancia magnética (RM), requieren que los pacientes permanezcan acostados, una posición que mejora artificialmente... Más

Ultrasonido

ver canal
Imagen: el ultrasonido focalizado puede detener el crecimiento de lesiones cerebrales debilitantes (Foto cortesía de Nature Biomedical Engineering; doi.org/10.1038/s41551-025-01390-z)

Nueva técnica sin incisiones detiene el crecimiento de lesiones cerebrales debilitantes

Las malformaciones cavernosas cerebrales (MCC), también conocidas como cavernomas, son agrupaciones anómalas de vasos sanguíneos que pueden formarse en el cerebro, la médula... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

Imaginología General

ver canal
Imagen: El cinturón de TC por ultrasonido podría facilitar el seguimiento de pacientes con afecciones cardíacas y pulmonares (foto cortesía de la Universidad de Bath)

Dispositivo portátil pionero ofrece una alternativa revolucionaria a las tomografías computarizadas

Actualmente, los pacientes con afecciones como insuficiencia cardíaca, neumonía o dificultad respiratoria suelen requerir múltiples procedimientos de diagnóstico por imagen... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.