Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




La IA podría ayudar a los radiólogos a mejorar el diagnóstico de la osteoartritis mediante rayos X

Por el equipo editorial de MedImaging en español
Actualizado el 30 Oct 2018
Imagen: El sistema de clasificación KL para evaluar la gravedad de la OA de rodilla. Un algoritmo nuevo de la UCSF ayudará a detectar la OA usando este sistema (Fotografía cortesía de la Universidad de California, San Francisco).
Imagen: El sistema de clasificación KL para evaluar la gravedad de la OA de rodilla. Un algoritmo nuevo de la UCSF ayudará a detectar la OA usando este sistema (Fotografía cortesía de la Universidad de California, San Francisco).
Investigadores del Centro para la Innovación de la Salud Digital en la Universidad de California (San Francisco, CA, EUA) han desarrollado un algoritmo completamente automatizado para la detección con radiografías de la osteoartritis utilizando el Sistema de clasificación Kellgren Lawrence (KL) 0-4 con una red neuronal de vanguardia.

La clasificación de la osteoartritis en la rodilla se realiza con mayor frecuencia con radiografías que utilizan el sistema de clasificación de 0-4 KL, donde 0 es normal, 1 muestra signos dudosos de osteoartritis, 2 es artrosis leve, 3 es artrosis moderada y 4 es artrosis severa. La clasificación de KL se usa ampliamente para la evaluación clínica y el diagnóstico de osteoartritis, generalmente en un alto volumen de radiografías, lo que hace que su automatización sea de una relevancia muy alta.

Para desarrollar un algoritmo completamente automatizado para la detección de osteoartritis mediante clasificaciones KL con una red neuronal de vanguardia, los investigadores recolectaron 4.490 radiografías de rodilla de flexión fija AP, bilaterales, del conjunto de datos de la Iniciativa de Osteoartritis (edad = 61,2 ± 9,2 años, IMC = 32,8 ± 15,9 kg/m2, división de 42/58 hombres/mujeres) para seis puntos de tiempo diferentes. Las articulaciones de la rodilla izquierda y derecha se localizaron utilizando un modelo de U-net. Estas imágenes localizadas se utilizaron para entrenar un conjunto de arquitecturas de redes neuronales, DenseNet, para la predicción de la gravedad de la osteoartritis.

Los índices de sensibilidad para este conjunto DenseNet sin osteoartritis, artrosis leve, moderada y grave fueron de 83,7; 70,2; 68,9 y 86,0%, respectivamente, mientras que las tasas de especificidad correspondientes fueron de 86,1; 83,8; 97,1 y 99 de 1%. Usando mapas de prominencia, los investigadores confirmaron que las redes neuronales que producen estos resultados estaban, de hecho, seleccionando las características osteoartríticas correctas utilizadas en la detección. Los resultados sugieren que el uso del clasificador automático podría ayudar a los radiólogos a realizar un diagnóstico más exacto y preciso, dado el volumen creciente de las imágenes radiográficas que se toman en las clínicas.

Enlace relacionado:
Universidad de California

New
Ultrasound Needle Guidance System
SonoSite L25
Wall Fixtures
MRI SERIES
Radiology Software
DxWorks
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices

Canales

RM

ver canal
Imagen: una resonancia magnética cardíaca con contraste de un paciente con miocardiopatía hipertrófica considerado por MAARS con alto riesgo de muerte súbita (foto cortesía de la Universidad Johns Hopkins)

Modelo de IA supera a los médicos en la identificación de pacientes con mayor riesgo de paro cardíaco

La miocardiopatía hipertrófica es una de las cardiopatías hereditarias más comunes y una de las principales causas de muerte súbita cardíaca en jóvenes y deportistas.... Más

Ultrasonido

ver canal
Imagen: el nuevo dispositivo implantable para el tratamiento del dolor crónico es pequeño y flexible (foto cortesía de The Zhou Lab at USC)

Dispositivo inalámbrico para el manejo del dolor crónico reduce la necesidad de analgésicos y cirugía

El dolor crónico afecta a millones de personas en todo el mundo, lo que a menudo provoca discapacidad a largo plazo y dependencia de opioides, los cuales conllevan riesgos importantes de efectos... Más

Medicina Nuclear

ver canal
Imagen: la herramienta de diagnóstico podría mejorar las decisiones de diagnóstico y tratamiento para pacientes con infecciones pulmonares crónicas (foto cortesía de SNMMI)

Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar

Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más

Imaginología General

ver canal
Imágenes de resultado positivo en examen de detección de colonografía por TC en un hombre asintomático de 67 años (foto cortesía de Radiology)

La colonografía por TC supera a la prueba de ADN en heces para la detección del cáncer de colon

Dado que el cáncer colorrectal sigue siendo la segunda causa principal de muertes relacionadas con el cáncer a nivel mundial, la detección temprana mediante pruebas de cribado es fundamental... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.