Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Eventos

28 ene 2019 - 01 feb 2019

La IA podría ayudar a los radiólogos a mejorar el diagnóstico de la osteoartritis mediante rayos X

Por el equipo editorial de Medimaging en español
Actualizado el 30 Oct 2018
Print article
Imagen: El sistema de clasificación KL para evaluar la gravedad de la OA de rodilla. Un algoritmo nuevo de la UCSF ayudará a detectar la OA usando este sistema (Fotografía cortesía de la Universidad de California, San Francisco).
Imagen: El sistema de clasificación KL para evaluar la gravedad de la OA de rodilla. Un algoritmo nuevo de la UCSF ayudará a detectar la OA usando este sistema (Fotografía cortesía de la Universidad de California, San Francisco).
Investigadores del Centro para la Innovación de la Salud Digital en la Universidad de California (San Francisco, CA, EUA) han desarrollado un algoritmo completamente automatizado para la detección con radiografías de la osteoartritis utilizando el Sistema de clasificación Kellgren Lawrence (KL) 0-4 con una red neuronal de vanguardia.

La clasificación de la osteoartritis en la rodilla se realiza con mayor frecuencia con radiografías que utilizan el sistema de clasificación de 0-4 KL, donde 0 es normal, 1 muestra signos dudosos de osteoartritis, 2 es artrosis leve, 3 es artrosis moderada y 4 es artrosis severa. La clasificación de KL se usa ampliamente para la evaluación clínica y el diagnóstico de osteoartritis, generalmente en un alto volumen de radiografías, lo que hace que su automatización sea de una relevancia muy alta.

Para desarrollar un algoritmo completamente automatizado para la detección de osteoartritis mediante clasificaciones KL con una red neuronal de vanguardia, los investigadores recolectaron 4.490 radiografías de rodilla de flexión fija AP, bilaterales, del conjunto de datos de la Iniciativa de Osteoartritis (edad = 61,2 ± 9,2 años, IMC = 32,8 ± 15,9 kg/m2, división de 42/58 hombres/mujeres) para seis puntos de tiempo diferentes. Las articulaciones de la rodilla izquierda y derecha se localizaron utilizando un modelo de U-net. Estas imágenes localizadas se utilizaron para entrenar un conjunto de arquitecturas de redes neuronales, DenseNet, para la predicción de la gravedad de la osteoartritis.

Los índices de sensibilidad para este conjunto DenseNet sin osteoartritis, artrosis leve, moderada y grave fueron de 83,7; 70,2; 68,9 y 86,0%, respectivamente, mientras que las tasas de especificidad correspondientes fueron de 86,1; 83,8; 97,1 y 99 de 1%. Usando mapas de prominencia, los investigadores confirmaron que las redes neuronales que producen estos resultados estaban, de hecho, seleccionando las características osteoartríticas correctas utilizadas en la detección. Los resultados sugieren que el uso del clasificador automático podría ayudar a los radiólogos a realizar un diagnóstico más exacto y preciso, dado el volumen creciente de las imágenes radiográficas que se toman en las clínicas.

Enlace relacionado:
Universidad de California


Print article
Italray
Radcal

Canales

Radiografía

ver canal
Imagen: Un tablero de instrumentos con un detector de pantalla plana revista automáticamente la salud del sistema de RD (Fotografía cortesía de Konica Minolta).

Un tablero de control con pantalla plana analiza el desempeño por región anatómica

Un tablero de control con detector de pantalla plana (FPD) integral para radiografía digital (RD) recolecta y agrega automáticamente los datos de salud y uso del sistema en visiones analíticas potentes.... Más

Medicina Nuclear

ver canal
Imagen: un nuevo estudio sugiere que la WBRT que evita el hipocampo puede preservar la función cognitiva (Fotografía cortesía de Getty Images).

Una técnica nueva de radioterapia cerebral total reduce el riesgo de deterioro neurocognitivo

Según un estudio nuevo, los efectos cognitivos adversos de la radioterapia cerebral total (WBRT, por sus siglas en inglés) se pueden mitigar de manera significativa mediante el uso de una técnica de preservación... Más

TI en Imaginología

ver canal
Imagen: Un simple portal para pacientes almacena imágenes e informes (Fotografía cortesía de Intelerad).

Un portal centrado en los pacientes facilita el acceso a la imagenología directa

Un portal nuevo de imagenología brinda a los pacientes acceso directo a su historial de exámenes, imágenes e informes en cualquier momento y en cualquier lugar. La plataforma de imágenes en la nube... Más
Copyright © 2000-2018 Globetech Media. All rights reserved.