Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Un estudio encuentra que la IA se queda corta al momento de analizar datos médicos

Por el equipo editorial de MedImaging en español
Actualizado el 28 Nov 2018
Un estudio realizado en la Facultad de Medicina Icahn en Monte Sinaí (Nueva York, NY, EUA) descubrió que las herramientas de inteligencia artificial (IA) entrenadas para detectar neumonía en las radiografías de tórax sufrieron una disminución significativa en el desempeño cuando las ensayaron en datos de sistemas de salud externos. Estos hallazgos sugieren que, a menos que la inteligencia artificial en el espacio médico sea probada cuidadosamente con respecto al desempeño en una amplia gama de poblaciones, los modelos de aprendizaje profundo pueden no funcionar con la exactitud que se espera.

En medio del creciente interés en el uso de marcos de sistemas informáticos denominados redes neuronales convolucionales (RNC) para analizar imágenes médicas y proporcionar un diagnóstico asistido por computadora, los estudios recientes han encontrado que la clasificación de imágenes de IA puede no generalizarse a los nuevos datos como se presenta comúnmente. Los investigadores de la Facultad de Medicina Icahn en Monte Sinaí evaluaron cómo los modelos de IA identificaron la neumonía en 158.000 radiografías de tórax en tres instituciones médicas. Eligieron estudiar el diagnóstico de neumonía en las radiografías de tórax debido a su aparición común, importancia clínica y prevalencia en la comunidad de investigación.

Los investigadores descubrieron que, en tres de cada cinco comparaciones, el desempeño de las RNC en el diagnóstico de enfermedades en los rayos X de hospitales fuera de su propia red, fue significativamente menor en comparación con los rayos X del sistema de salud original. Sin embargo, las RNC pudieron detectar el sistema hospitalario donde se adquirió una radiografía con un alto grado de exactitud e hicieron trampa en su tarea predictiva basada en la prevalencia de neumonía en la institución de capacitación. Los investigadores encontraron que el problema clave en el uso de modelos de aprendizaje profundo en medicina es el uso de una gran cantidad de parámetros, lo que dificulta la identificación de variables específicas que determinan las predicciones, como los tipos de escáneres de tomografía computarizada utilizados en un hospital y la calidad de resolución de las imágenes

“Nuestros hallazgos deberían detener a aquellos que piensan en el despliegue rápido de plataformas de IA sin evaluar rigurosamente su desempeño en entornos clínicos reales que reflejen dónde se implementan”, dijo el autor principal, Eric Oermann, MD, Instructor en Neurocirugía en la Facultad de Medicina Icahn en el Monte Sinaí. “Los modelos de aprendizaje profundo entrenados para realizar diagnósticos médicos pueden generalizarse bien, pero esto no puede darse por sentado ya que las poblaciones de pacientes y las técnicas de imagenología difieren significativamente entre las instituciones”.

“Si los sistemas de RNC se van a usar para el diagnóstico médico, se deben adaptar para considerar cuidadosamente las preguntas clínicas, ser probadas en una variedad de escenarios del mundo real y evaluadas cuidadosamente para determinar cómo afectan el diagnóstico exacto”, dijo el primer autor, John Zech, un estudiante de medicina en la Facultad de Medicina Icahn en Monte Sinaí.

Enlace relacionado:
Monte Sinaí

3T MRI Scanner
MAGNETOM Cima.X
X-ray Diagnostic System
FDX Visionary-A
Ultra-Flat DR Detector
meX+1717SCC
New
Mammography System (Analog)
MAM VENUS

Canales

RM

ver canal
Imagen: una resonancia magnética cardíaca con contraste de un paciente con miocardiopatía hipertrófica considerado por MAARS con alto riesgo de muerte súbita (foto cortesía de la Universidad Johns Hopkins)

Modelo de IA supera a los médicos en la identificación de pacientes con mayor riesgo de paro cardíaco

La miocardiopatía hipertrófica es una de las cardiopatías hereditarias más comunes y una de las principales causas de muerte súbita cardíaca en jóvenes y deportistas.... Más

Ultrasonido

ver canal
Imagen: el nuevo dispositivo implantable para el tratamiento del dolor crónico es pequeño y flexible (foto cortesía de The Zhou Lab at USC)

Dispositivo inalámbrico para el manejo del dolor crónico reduce la necesidad de analgésicos y cirugía

El dolor crónico afecta a millones de personas en todo el mundo, lo que a menudo provoca discapacidad a largo plazo y dependencia de opioides, los cuales conllevan riesgos importantes de efectos... Más

Medicina Nuclear

ver canal
Imagen: la herramienta de diagnóstico podría mejorar las decisiones de diagnóstico y tratamiento para pacientes con infecciones pulmonares crónicas (foto cortesía de SNMMI)

Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar

Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más

Imaginología General

ver canal
Imágenes de resultado positivo en examen de detección de colonografía por TC en un hombre asintomático de 67 años (foto cortesía de Radiology)

La colonografía por TC supera a la prueba de ADN en heces para la detección del cáncer de colon

Dado que el cáncer colorrectal sigue siendo la segunda causa principal de muertes relacionadas con el cáncer a nivel mundial, la detección temprana mediante pruebas de cribado es fundamental... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.