Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Eventos

28 ene 2019 - 01 feb 2019
02 feb 2019 - 07 feb 2019

Un algoritmo nuevo de inteligencia artificial aumenta la detección de pólipos en los procedimientos de colonoscopia

Por el equipo editorial de Medimaging en español
Actualizado el 05 Dec 2018
Print article
Imagen: El algoritmo Wision AI resalta los pólipos en el monitor, mejorando la detección (abajo) (Fotografía cortesía de Shanghai Wision AI).
Imagen: El algoritmo Wision AI resalta los pólipos en el monitor, mejorando la detección (abajo) (Fotografía cortesía de Shanghai Wision AI).
Los investigadores de Shanghai Wision AI Co., Ltd. (Shanghai, China), un desarrollador de algoritmos y sistemas de diagnóstico asistidos por computadora para mejorar la exactitud y efectividad de las imágenes de diagnóstico, han anunciado los resultados de un estudio que valida un algoritmo nuevo de aprendizaje automático para mejorar la detección de pólipos adenomatosos durante la colonoscopia. El algoritmo de IA se basa en la misma arquitectura de red utilizada para desarrollar automóviles de conducción automática y está diseñado para permitir la “conducción automática” en los procedimientos de colonoscopia.

El algoritmo Wision AI se validó en conjuntos de datos grandes, desarrollados prospectivamente, diferentes del conjunto de datos de entrenamiento o recopilados independientemente y que fueron varias veces más grandes que el conjunto de datos de entrenamiento. Este enfoque de validación más riguroso utilizado por Wision AI pretende aumentar el desempeño del algoritmo en entornos clínicos del mundo real.

El algoritmo se desarrolló utilizando 5.545 imágenes (65,5% conteniendo pólipos y 34,5% sin pólipos) a partir de los informes de colonoscopia de 1.290 pacientes. Los endoscopistas experimentados anotaron la presencia de pólipos en todas las imágenes utilizadas en el conjunto de datos de desarrollo, y el algoritmo se validó en cuatro conjuntos de datos independientes: dos conjuntos para análisis de imágenes (A y B) y dos conjuntos para análisis de video (C y D). De acuerdo con los hallazgos clave del estudio, la validación en el conjunto de datos A, que incluyó 27.113 imágenes de pacientes a quienes les practicaron una colonoscopia en el Centro de Endoscopia del Hospital Provincial del Pueblo de Sichuan, encontró una sensibilidad por imagen del 94,4% y una especificidad por imagen del 95,9%. La sensibilidad por imagen en un subconjunto de 1.280 imágenes con pólipos que generalmente son difíciles de detectar, fue de 91,7%.

La validación en el conjunto de datos B, basada en una base de datos pública de 612 imágenes de colonoscopia adquiridas en el Hospital Clinic de Barcelona, encontró una sensibilidad por imagen del 88,2%. El uso de este conjunto de datos permitió la generalización de los datos de validación a una población de pacientes más amplia. La validación en el conjunto de datos C que incluyó una serie de videos de colonoscopia con 138 pólipos, encontró una sensibilidad por imagen del 91,6% entre 60.914 marcos de video y una sensibilidad por pólipo del 100%. La validación en el conjunto de datos D, que contenía 54 videos de colonoscopia sin pólipos, encontró una especificidad por imagen del 95,4% entre 1.072.483 marcos. El tiempo total de procesamiento para cada marco de imagen fue de 76,8 milisegundos, incluido el preprocesamiento y la visualización de los tiempos antes y después de la ejecución del algoritmo de aprendizaje profundo. La implementación en un sistema en tiempo real dio como resultado una tasa de procesamiento de 30 marcos por segundo con las GPU Nvidia Titan X.

Sobre la base de estos hallazgos, los investigadores concluyeron que el sistema automático de detección de pólipos, basado en el aprendizaje profundo, tiene un alto desempeño general tanto en imágenes de colonoscopia como en videos en tiempo real.

“Los resultados de este estudio demuestran el poder de nuestro enfoque riguroso para desarrollar algoritmos de aprendizaje profundo, que utilizan conjuntos de datos distintos para la capacitación y validación, y da como resultado altos niveles de especificidad y sensibilidad que tienen el potencial de mejorar los métodos de cribado de diagnóstico que se conocen por reducir el riesgo de enfermedad, mejorar los resultados de salud y salvar vidas”, dijo JingJia Liu, director ejecutivo de Wision AI.

Enlace relacionado:
Shanghai Wision AI Co., Ltd.


Print article
Italray

Canales

Medicina Nuclear

ver canal
Imagen: un nuevo estudio sugiere que la WBRT que evita el hipocampo puede preservar la función cognitiva (Fotografía cortesía de Getty Images).

Una técnica nueva de radioterapia cerebral total reduce el riesgo de deterioro neurocognitivo

Según un estudio nuevo, los efectos cognitivos adversos de la radioterapia cerebral total (WBRT, por sus siglas en inglés) se pueden mitigar de manera significativa mediante el uso de una técnica de preservación... Más

Imaginología General

ver canal
Imagen: Un examen PET/TC de cuerpo completo en el escáner Explorer (Fotografía cortesía de UCD).

Un escáner de cuerpo entero revela las primeras imágenes de humanos

Un tomógrafo novedoso de tomografía por emisión de positrones (TEP) y tomografía computarizada por rayos X (TC) puede obtener imágenes de todo el cuerpo en tan solo un segundo. El escáner Explorer,... Más

TI en Imaginología

ver canal
Imagen: Un simple portal para pacientes almacena imágenes e informes (Fotografía cortesía de Intelerad).

Un portal centrado en los pacientes facilita el acceso a la imagenología directa

Un portal nuevo de imagenología brinda a los pacientes acceso directo a su historial de exámenes, imágenes e informes en cualquier momento y en cualquier lugar. La plataforma de imágenes en la nube... Más
Copyright © 2000-2018 Globetech Media. All rights reserved.