Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Se libera el conjunto de datos de fuente abierta más grande hasta la fecha para acelerar las resonancias magnéticas usando la inteligencia artificial

Por el equipo editorial de MedImaging en español
Actualizado el 26 Dec 2018
Imagen: El director del Departamento de Radiología de la Facultad de Medicina de la Universidad de Nueva York, Michael Recht, MD; Daniel Sodickson, MD, PhD, vicepresidente de investigación y director del Centro de Innovación e Investigación de Imágenes Avanzadas; e Yvonne Lui, MD, directora de inteligencia artificial, ven cómo se realiza un examen de resonancia magnética en NYU Langone Health en Nueva York en agosto de 2018.
Imagen: El director del Departamento de Radiología de la Facultad de Medicina de la Universidad de Nueva York, Michael Recht, MD; Daniel Sodickson, MD, PhD, vicepresidente de investigación y director del Centro de Innovación e Investigación de Imágenes Avanzadas; e Yvonne Lui, MD, directora de inteligencia artificial, ven cómo se realiza un examen de resonancia magnética en NYU Langone Health en Nueva York en agosto de 2018.
El Departamento de Radiología de la Facultad de Medicina de la NYU (Nueva York, NY, EUA) lanzó el primer conjunto de datos de resonancia magnética a gran escala de este tipo como parte de fastMRI, un esfuerzo de colaboración con Facebook AI Research (Nueva York, NY, EUA) para acelerar los exámenes de resonancia magnética con inteligencia artificial (IA).

La colaboración tiene como objetivo compartir herramientas de código abierto y estimular el desarrollo de los sistemas de inteligencia artificial para hacer que las imágenes de resonancia magnética sean 10 veces más rápidas. La colaboración promoverá la reproducibilidad de la investigación, proporcionará métodos de evaluación consistentes y capacitará a la comunidad más amplia de científicos de inteligencia artificial y de imagenología médica.

Utilizando la IA, los investigadores creen que será posible capturar menos datos y, por lo tanto, obtener imágenes más rápidamente, al tiempo que se preserva o incluso se mejora la rica información contenida en las imágenes de las RM. Los líderes del estudio dicen que, si tiene éxito, la resonancia magnética rápida podría beneficiar a una amplia gama de personas que pueden tener dificultades para tolerar los exámenes largos, incluidos los niños pequeños, los pacientes ancianos y las personas con claustrofobia. También podría disminuir la necesidad de anestesia o sedación. Además, el proyecto podría ampliar el acceso a esta herramienta de diagnóstico clave, particularmente en áreas donde hay una escasez de escáneres de resonancia magnética y los pacientes enfrentan largos tiempos de espera para sus exámenes.

La versión inicial del conjunto de datos incluye más de 1,5 millones de imágenes de RM anónimas de la rodilla, extraídas de 10.000 exámenes, además de datos de medición sin procesar de casi 1.600 exploraciones. Mientras que se han publicado anteriormente otros conjuntos de imágenes radiológicas, este conjunto de datos representa la mayor liberación pública de datos de resonancia magnética sin procesar hasta la fecha. La primera fase del proyecto incluirá datos de exámenes de resonancia magnética de rodilla, pero las versiones futuras incluirán datos de exámenes hepáticos y cerebrales. El equipo conjunto también proporcionará una serie de herramientas, que incluyen métricas de referencia para comparar resultados, y una tabla de clasificación para realizar un seguimiento del progreso como parte de un desafío organizado que se anunciará en un futuro próximo.

“fastMRI no solo podría tener un impacto importante en el campo médico, sino que también es un desafío de investigación interesante que ayudará a avanzar en el campo de la IA”, dijo Larry Zitnick, Gerente de Investigación de Facebook AI Research. “Para ser médicamente útiles, nuestras imágenes reconstruidas con inteligencia artificial deben ser más que atractivas, también deben ser representaciones exactas de la verdad fundamental, a pesar de que están creadas a partir de una cantidad significativamente menor de datos. El conjunto de datos de NYU Langone está libre y los modelos de línea de base que hemos abierto permitirán que otros investigadores se unan a nosotros para trabajar en este problema desafiante, y creemos que este enfoque abierto traerá resultados positivos más rápidamente”.

“Esta colaboración se enfoca en aplicar los puntos fuertes del aprendizaje automático para reconstruir imágenes de alto valor de nuevas maneras. En lugar de utilizar las imágenes existentes para entrenar los algoritmos de IA, cambiaremos radicalmente la forma en que se adquieren las imágenes médicas”, dijo Daniel Sodickson, MD, PhD, profesor de radiología y neurociencia y fisiología y director del CAIR. “Nuestro objetivo no es simplemente mejorar la minería de datos con la IA, sino crear nuevas capacidades para la visualización médica, en beneficio de la salud humana”.

Enlace relacionado:
Facultad de Medicina de la NYU
Facebook AI Research



Ultra-Flat DR Detector
meX+1717SCC
New
Medical Radiographic X-Ray Machine
TR30N HF
New
Biopsy Software
Affirm® Contrast
Ultrasound Imaging System
P12 Elite

Canales

RM

ver canal
Imagen: los investigadores utilizaron RM y pantalones inspirados en la NASA para mejorar las pruebas de esfuerzo y revelar problemas cardíacos ocultos (foto cortesía de UTA)

Nueva técnica de resonancia magnética revela problemas cardíacos ocultos

Las pruebas de esfuerzo tradicionales, realizadas en una máquina de resonancia magnética (RM), requieren que los pacientes permanezcan acostados, una posición que mejora artificialmente... Más

Ultrasonido

ver canal
Imagen: el ultrasonido focalizado puede detener el crecimiento de lesiones cerebrales debilitantes (Foto cortesía de Nature Biomedical Engineering; doi.org/10.1038/s41551-025-01390-z)

Nueva técnica sin incisiones detiene el crecimiento de lesiones cerebrales debilitantes

Las malformaciones cavernosas cerebrales (MCC), también conocidas como cavernomas, son agrupaciones anómalas de vasos sanguíneos que pueden formarse en el cerebro, la médula... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

Imaginología General

ver canal
Imagen: El cinturón de TC por ultrasonido podría facilitar el seguimiento de pacientes con afecciones cardíacas y pulmonares (foto cortesía de la Universidad de Bath)

Dispositivo portátil pionero ofrece una alternativa revolucionaria a las tomografías computarizadas

Actualmente, los pacientes con afecciones como insuficiencia cardíaca, neumonía o dificultad respiratoria suelen requerir múltiples procedimientos de diagnóstico por imagen... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.