Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Una técnica de aprendizaje profundo podría revelar características transparentes en las imágenes médicas

Por el equipo editorial de MedImaging en español
Actualizado el 09 Jan 2019
Imagen: A partir de un grabado original (extremo derecho), los ingenieros produjeron una fotografía en la oscuridad (arriba a la izquierda), luego intentaron reconstruir el objeto utilizando primero un algoritmo basado en la física (arriba a la derecha), luego una red neuronal entrenada (abajo a la izquierda ), antes de combinar la red neuronal con el algoritmo basado en la física para producir la reproducción más clara y exacta (abajo a la derecha) del objeto original (Fotografía cortesía de MIT).
Imagen: A partir de un grabado original (extremo derecho), los ingenieros produjeron una fotografía en la oscuridad (arriba a la izquierda), luego intentaron reconstruir el objeto utilizando primero un algoritmo basado en la física (arriba a la derecha), luego una red neuronal entrenada (abajo a la izquierda ), antes de combinar la red neuronal con el algoritmo basado en la física para producir la reproducción más clara y exacta (abajo a la derecha) del objeto original (Fotografía cortesía de MIT).
Los ingenieros del Instituto Tecnológico de Massachusetts (Cambridge, MA, EUA) han desarrollado una técnica de aprendizaje profundo que puede revelar imágenes de características transparentes u objetos que son casi imposibles de descifrar en la oscuridad casi total.

Las redes neuronales profundas se han aplicado ampliamente en el campo de la visión por ordenador y el reconocimiento de imágenes. Los ingenieros del MIT desarrollaron recientemente redes neuronales para reconstruir objetos transparentes en imágenes tomadas con mucha luz. Sin embargo, se convirtieron en los primeros en utilizar redes neuronales profundas en experimentos para revelar objetos invisibles en imágenes tomadas en la oscuridad.

En su estudio, los investigadores reconstruyeron objetos transparentes a partir de imágenes de esos objetos, tomadas en condiciones de casi negro intenso utilizando una “red neuronal profunda”. Esta técnica de aprendizaje automático consiste en entrenar una computadora para asociar ciertas entradas con salidas específicas, en este caso imágenes oscuras, granuladas, de objetos transparentes y de los objetos mismos.

Los investigadores entrenaron una computadora para reconocer más de 10.000 grabados de vidrio transparente, basados en imágenes extremadamente granuladas de esos patrones. Las imágenes se tomaron en condiciones de muy poca luz, con aproximadamente un fotón por píxel, mucho menos luz de lo que una cámara registraría en una habitación oscura y sellada. Luego mostraron a la computadora una nueva imagen granulada, no incluida en los datos de entrenamiento, y encontraron que aprendió a reconstruir el objeto transparente que la oscuridad había ocultado.

Los investigadores repitieron sus experimentos con un conjunto de datos totalmente nuevo, que consta de más de 10.000 imágenes de objetos más generales y variados, incluidas personas, lugares y animales. Después del entrenamiento, los investigadores alimentaron la red neuronal con una imagen completamente nueva, tomada en la oscuridad, de un grabado transparente de una escena con góndolas atracadas en un muelle. Una vez más, encontraron que la reconstrucción informada por la física produjo una imagen más exacta del original, en comparación con las reproducciones sin la ley física incluida. Los resultados demuestran que se pueden usar redes neuronales profundas para iluminar características transparentes, como tejidos y células biológicas, en imágenes tomadas con muy poca luz.

“Hemos demostrado que el aprendizaje profundo puede revelar objetos invisibles en la oscuridad”, dijo el autor principal del estudio, Alexandre Goy. “Este resultado es de importancia práctica para que las imágenes médicas reduzcan la exposición de los pacientes a la radiación dañina y para las imágenes astronómicas”.

Enlace relacionado:
Instituto Tecnológico de Massachusetts

New
Digital Color Doppler Ultrasound System
MS22Plus
New
Mobile X-Ray System
K4W
Diagnostic Ultrasound System
DC-80A
New
Mammo DR Retrofit Solution
DR Retrofit Mammography

Canales

Radiografía

ver canal
Imagen: la AI evalúa las mamografías mejor que los radiólogos (foto cortesía de la Universidad de Radboud)

Estrategia híbrida con IA mejora la interpretación de mamografías

Los programas de detección del cáncer de mama dependen en gran medida de la interpretación de las mamografías por parte de radiólogos, un proceso que requiere mucho tiempo... Más

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: la herramienta de diagnóstico podría mejorar las decisiones de diagnóstico y tratamiento para pacientes con infecciones pulmonares crónicas (foto cortesía de SNMMI)

Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar

Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más

Imaginología General

ver canal
Imágenes de resultado positivo en examen de detección de colonografía por TC en un hombre asintomático de 67 años (foto cortesía de Radiology)

La colonografía por TC supera a la prueba de ADN en heces para la detección del cáncer de colon

Dado que el cáncer colorrectal sigue siendo la segunda causa principal de muertes relacionadas con el cáncer a nivel mundial, la detección temprana mediante pruebas de cribado es fundamental... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.