Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Eventos

14 mar 2019 - 17 mar 2019

Los profesionales de imagenología consideran importante el aprendizaje automático para la industria

Por el equipo editorial de Medimaging en español
Actualizado el 29 Jan 2019
Print article
Imagen: Un estudio nuevo encuentra que la mayoría de los profesionales considera el AA como importante para su industria en el futuro (Fotografía cortesía del Colegio Imperial de Londres).
Imagen: Un estudio nuevo encuentra que la mayoría de los profesionales considera el AA como importante para su industria en el futuro (Fotografía cortesía del Colegio Imperial de Londres).
La mayoría de los radiólogos y líderes de imagenología cree que el aprendizaje automático (AA) jugará un papel importante en la radiología, aunque la mayoría de las organizaciones se encuentran a dos a tres años de la adopción de la tecnología, mientras que una minoría considerable aún no tiene planes para adoptarla.

Esos son los últimos hallazgos de una encuesta reciente realizada por la firma investigadores de mercado Reaction Data, Inc. (American Fork, UT, EUA) para entender la exageración que rodea la inteligencia artificial (IA) y el AA, particularmente en radiología e imagenología. La encuesta también tuvo como objetivo identificar dónde la IA puede ser más útil y aplicable, y las áreas en las cuáles los profesionales de imagenología médica tienen probabilidad de usar el AA.

Los resultados de la encuesta se basaron en la retroalimentación recibida de los profesionales de imagenología, incluyendo directores de radiología, radiólogos, directores de imagenología, gerentes de imagenología, jefes de radiología, técnicos de imagenología y administradores de PACS de 152 organizaciones de salud. Del total de encuestados, aproximadamente el 60% venía de centros médicos académicos u hospitales comunitarios, 15% de redes integradas de atención, 12% de centros de imagenología y el resto de hospitales de acceso crítico, clínicas de especialistas, hospitales de cáncer u hospitales pediátricos.

La encuesta encontró que el porcentaje de encuestados que creía que el AA es importante en la imagenología médica había aumentado a 77% de 65% en 2017, mientras que solo 11% visualizó la tecnología como sin importancia. Por otra parte, solo el 59% de los encuestados dijo que entendía el AA, frente a 52% en 2017, mientras que 20% no entendía la tecnología y 20% tenía cierta compresión.

En términos de adopción, la encuesta encontró que solo el 22% de los encuestados usaban actualmente AA y lo habían adoptado solo recientemente o lo usaban desde hace algún tiempo, mientras que el 11% planeaba adoptar la tecnología el año siguiente. 51% de los encuestados dijo que sus organizaciones estaban a de uno a dos años (28%) o más de tres años (23%) de adoptar el AA, mientras que el 16% dijo que era poco probable que sus organizaciones utilizaran la tecnología.

La encuesta también examinó cómo las organizaciones aplicaban el AA en imagenología y encontró que el 22% de los encuestados usaba la tecnología para la imagenología de la mama y del pulmón, en comparación del 36% y 12%, respectivamente en 2017. Otras aplicaciones del AA en imagenología incluían cardiovascular (13%), rayos-x de tórax (11%), hueso (7%), hígado (7%), neural (5%) y pulmonar (4%).

En su examen de los vendedores que usan los encuestados que han adoptado el AA, la encuesta encontró que ningún vendedor único dominaba este espacio, con 19% usando GE Healthcare y 16% usando Hologic. Otros vendedores utilizados incluían a Philips (14%), Arterys (7%), Nvidia (3%), y Zebra Medical Vision e iCAD (5% cada uno). El porcentaje de líderes de imagenología usando Google como su vendedor de aprendizaje automático cayó a 3% de 13% en 2017, mientras que los usuarios de aprendizaje automático en casa aumentaron a 14% de 9% en 2017.

Enlace relacionado:
Reaction Data, Inc.


Print article
Italray
Radcal

Canales

Radiografía

ver canal
Imagen: Las pruebas de aisladores cristalinos pueden medir los niveles de radiación de fondo (Fotografía cortesía de la Universidad Estatal de Carolina del Norte).

Unas pruebas cristalinas evalúan rápidamente la exposición a la radiación

Un estudio nuevo afirma que el análisis de los aisladores cristalinos que se encuentran en la mayoría de los dispositivos electrónicos modernos, podría facilitar la dosimetría de respuesta de emergencia... Más

Ultrasonido

ver canal
Imagen: El aprendizaje profundo y la inteligencia artificial (AI) transforman los exámenes de ultrasonido obstétrico en una experiencia más fácil, más rápida, más consistente y mucho más exacta (Fotografía cortesía de SonoScape).

Una tecnología con IA automatiza el flujo de trabajo del ultrasonido obstétrico

El algoritmo S-fetus de SonoScape Medical (Shenzhen, China), diseñado para el sistema de ultrasonido S60, ha sido diseñado para simplificar un procedimiento de ultrasonido obstétrico estándar reduciéndolo... Más

Medicina Nuclear

ver canal
Imagen: La plataforma de radiocirugía giroscópica ZAP-X (Fotografía cortesía de ZAP Surgical Systems).

Una plataforma de radiocirugía giroscópica hace la ablación de tumores de cerebro

Una plataforma nueva de radioterapia (RT) administra radiocirugía estereotáctica de dosis altas (SRS) para extirpar de forma no invasiva los tumores cerebrales y otras afecciones intracraneales seleccionadas.... Más

Imaginología General

ver canal
Imagen: El nuevo sistema de resonancia magnética, Magnetom Lumina 3T (Fotografía cortesía de Siemens Healthineers).

Un escáner de resonancia magnética de gran apertura mejora la satisfacción de los pacientes.

Un dispositivo innovador de imágenes de resonancia magnética (RM) utiliza una tecnología centrada en el paciente para simplificar y acortar los flujos de trabajo y aumentar la productividad, la reproducibilidad... Más

TI en Imaginología

ver canal
Imagen: El software empresarial uPath proporciona mejores herramientas de patología digital (Fotografía cortesía de Roche).

Un software de patología digital mejora la eficiencia del flujo de trabajo

Una plataforma de software novedosa reduce drásticamente los tiempos de generación de imágenes, integra el análisis automatizado de imágenes y permite un mejor intercambio de casos entre patólogos.... Más
Copyright © 2000-2019 Globetech Media. All rights reserved.