Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Deascargar La Aplicación Móvil




Los profesionales de imagenología consideran importante el aprendizaje automático para la industria

Por el equipo editorial de Medimaging en español
Actualizado el 29 Jan 2019
Print article
Imagen: Un estudio nuevo encuentra que la mayoría de los profesionales considera el AA como importante para su industria en el futuro (Fotografía cortesía del Colegio Imperial de Londres).
Imagen: Un estudio nuevo encuentra que la mayoría de los profesionales considera el AA como importante para su industria en el futuro (Fotografía cortesía del Colegio Imperial de Londres).
La mayoría de los radiólogos y líderes de imagenología cree que el aprendizaje automático (AA) jugará un papel importante en la radiología, aunque la mayoría de las organizaciones se encuentran a dos a tres años de la adopción de la tecnología, mientras que una minoría considerable aún no tiene planes para adoptarla.

Esos son los últimos hallazgos de una encuesta reciente realizada por la firma investigadores de mercado Reaction Data, Inc. (American Fork, UT, EUA) para entender la exageración que rodea la inteligencia artificial (IA) y el AA, particularmente en radiología e imagenología. La encuesta también tuvo como objetivo identificar dónde la IA puede ser más útil y aplicable, y las áreas en las cuáles los profesionales de imagenología médica tienen probabilidad de usar el AA.

Los resultados de la encuesta se basaron en la retroalimentación recibida de los profesionales de imagenología, incluyendo directores de radiología, radiólogos, directores de imagenología, gerentes de imagenología, jefes de radiología, técnicos de imagenología y administradores de PACS de 152 organizaciones de salud. Del total de encuestados, aproximadamente el 60% venía de centros médicos académicos u hospitales comunitarios, 15% de redes integradas de atención, 12% de centros de imagenología y el resto de hospitales de acceso crítico, clínicas de especialistas, hospitales de cáncer u hospitales pediátricos.

La encuesta encontró que el porcentaje de encuestados que creía que el AA es importante en la imagenología médica había aumentado a 77% de 65% en 2017, mientras que solo 11% visualizó la tecnología como sin importancia. Por otra parte, solo el 59% de los encuestados dijo que entendía el AA, frente a 52% en 2017, mientras que 20% no entendía la tecnología y 20% tenía cierta compresión.

En términos de adopción, la encuesta encontró que solo el 22% de los encuestados usaban actualmente AA y lo habían adoptado solo recientemente o lo usaban desde hace algún tiempo, mientras que el 11% planeaba adoptar la tecnología el año siguiente. 51% de los encuestados dijo que sus organizaciones estaban a de uno a dos años (28%) o más de tres años (23%) de adoptar el AA, mientras que el 16% dijo que era poco probable que sus organizaciones utilizaran la tecnología.

La encuesta también examinó cómo las organizaciones aplicaban el AA en imagenología y encontró que el 22% de los encuestados usaba la tecnología para la imagenología de la mama y del pulmón, en comparación del 36% y 12%, respectivamente en 2017. Otras aplicaciones del AA en imagenología incluían cardiovascular (13%), rayos-x de tórax (11%), hueso (7%), hígado (7%), neural (5%) y pulmonar (4%).

En su examen de los vendedores que usan los encuestados que han adoptado el AA, la encuesta encontró que ningún vendedor único dominaba este espacio, con 19% usando GE Healthcare y 16% usando Hologic. Otros vendedores utilizados incluían a Philips (14%), Arterys (7%), Nvidia (3%), y Zebra Medical Vision e iCAD (5% cada uno). El porcentaje de líderes de imagenología usando Google como su vendedor de aprendizaje automático cayó a 3% de 13% en 2017, mientras que los usuarios de aprendizaje automático en casa aumentaron a 14% de 9% en 2017.

Enlace relacionado:
Reaction Data, Inc.


Print article
Radcal

Canales

Ultrasonido

ver canal
Imagen: Una nueva investigación afirma que la búsqueda de rayos X con mejores imágenes puede llevar a una mayor exposición (Fotografía cortesía de Getty Images).

Llegada de la RD podría conducir a una fluencia de la colimación

El cambio a la radiografía digital (RD) puede dar lugar a un “arrastre de dosis”, en el que los niveles de radiación aumentan lentamente con el tiempo a medida que los radiólogos intentan producir una... Más

Imaginología General

ver canal
Imagen: El profesor Lyes Kadem (I) y el duplicador del corazón izquierdo personalizado de activación doble (Fotografía cortesía de la Universidad de Concordia).

RM de contraste de fase puede evaluar la función de las válvulas artificiales del corazón

De acuerdo con un estudio nuevo, las imágenes de resonancia magnética (RM) sin contraste de fase no invasivas y libres de radiación pueden detectar obstrucciones en las válvulas cardíacas mecánicas de... Más

TI en Imaginología

ver canal
Imagen: El software empresarial uPath proporciona mejores herramientas de patología digital (Fotografía cortesía de Roche).

Un software de patología digital mejora la eficiencia del flujo de trabajo

Una plataforma de software novedosa reduce drásticamente los tiempos de generación de imágenes, integra el análisis automatizado de imágenes y permite un mejor intercambio de casos entre patólogos.... Más
Copyright © 2000-2019 Globetech Media. All rights reserved.