Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Download Mobile App




Un algoritmo de IA identifica los tumores grandes más rápido que otros métodos

Por el equipo editorial de Medimaging en español
Actualizado el 27 Mar 2019
Print article
Imagen: El diseño del nuevo algoritmo permite identificar los tumores pulmonares de las imágenes por resonancia magnética, ayudando a reducir el daño al tejido sano durante el tratamiento de radiación (Fotografía cortesía de Shutterstock).
Imagen: El diseño del nuevo algoritmo permite identificar los tumores pulmonares de las imágenes por resonancia magnética, ayudando a reducir el daño al tejido sano durante el tratamiento de radiación (Fotografía cortesía de Shutterstock).
Los científicos de computación de la Universidad de Alberta (Alberta, Canadá) han desarrollado una red neuronal que supera a otros métodos avanzados para identificar tumores de pulmón a partir de imágenes de resonancia magnética (RM), creando el potencial para ayudar a reducir el daño al tejido sano durante los tratamientos de radiación.

Ubicar los tumores pulmonares utilizando exámenes de resonancia magnética es un desafío, ya que se mueven significativamente cuando el paciente respira y las imágenes también pueden ser difíciles de interpretar. Los investigadores “entrenaron” la red neuronal en un conjunto de imágenes de resonancia magnética en las que los médicos habían identificado anteriormente tumores de pulmón. Luego, la red procesó un enorme conjunto de imágenes para saber qué apariencia tienen los tumores y qué propiedades comparten. La red neuronal se probó contra exámenes que podían o no contener tumores. Después de que la red neuronal fue entrenada, los investigadores la probaron contra otra técnica desarrollada recientemente, al comparar los dos sistemas con la identificación manual de tumores por un experto en oncología de radiación. El nuevo algoritmo superó a la otra técnica reciente en cada medida de evaluación utilizada por los investigadores.

“Los algoritmos como el desarrollado en nuestro laboratorio se pueden usar para generar un modelo específico para para el diagnóstico y el tratamiento quirúrgico de los pacientes”, dijo Pierre Boulanger, Presidente de Investigación de Cisco en Soluciones para el Cuidado de la Salud de la Universidad de Alberta. “Las regiones tumorales en los resultados de los exámenes pueden ser muy sutiles, e incluso una vez identificadas, deben rastrearse con el tiempo a medida que el tumor se mueve con la respiración. El nuevo algoritmo es capaz de combinar muchas posibilidades para encontrar los mejores descriptores para identificar regiones insalubres en un examen”.

Enlace relacionado:
Universidad de Alberta


Print article
Radcal

Canales

Ultrasonido

ver canal
Imagen: La aplicación Clarius Live permite compartir los exámenes de ecografía (Fotografía cortesía de Clarius MobileHealth).

Solución de telemedicina simplifica las consultas del ultrasonido

Una nueva función de transmisión en vivo permite a los profesionales médicos transmitir sus ecografías en tiempo real a cualquier navegador web estándar en dispositivos de escritorio y móviles.... Más

Imaginología General

ver canal
Imagen: Una mamografía (A) comparada con una resonancia magnética de la mama (B) (Fotografía cortesía de MedUni).

Realizar resonancias magnéticas de mama después del cáncer puede generar biopsias superfluas

Un estudio nuevo afirma que para las mujeres con antecedentes personales de cáncer de mama, la vigilancia de la mama usando resonancia magnética da como resultado índices más altos de biopsias y detección de cáncer.... Más

TI en Imaginología

ver canal
Imagen: El software empresarial uPath proporciona mejores herramientas de patología digital (Fotografía cortesía de Roche).

Un software de patología digital mejora la eficiencia del flujo de trabajo

Una plataforma de software novedosa reduce drásticamente los tiempos de generación de imágenes, integra el análisis automatizado de imágenes y permite un mejor intercambio de casos entre patólogos.... Más
Copyright © 2000-2019 Globetech Media. All rights reserved.