Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Un algoritmo de IA detecta el cáncer de mama en las imágenes de resonancia magnética

Por el equipo editorial de MedImaging en español
Actualizado el 24 Apr 2019
Imagen: Se capacitó a un algoritmo inteligente en una red neuronal para reconocer la aparición del cáncer de mama en las imágenes de resonancia magnética. El algoritmo, descrito en el Simposio de Imágenes Mamarias SBI/ACR, utilizó el “Aprendizaje profundo”, una forma de aprendizaje automático, que es un tipo de inteligencia artificial (Fotografía cortesía de Sarah Eskreis-Winkler, M.D.).
Imagen: Se capacitó a un algoritmo inteligente en una red neuronal para reconocer la aparición del cáncer de mama en las imágenes de resonancia magnética. El algoritmo, descrito en el Simposio de Imágenes Mamarias SBI/ACR, utilizó el “Aprendizaje profundo”, una forma de aprendizaje automático, que es un tipo de inteligencia artificial (Fotografía cortesía de Sarah Eskreis-Winkler, M.D.).
Un equipo de investigadores del Centro de Cáncer Memorial Sloan Kettering (Nueva York, NY, EUA) capacitó a un algoritmo inteligente en una red neuronal para reconocer la aparición del cáncer de mama en las imágenes de resonancia magnética. Según los investigadores, el algoritmo utiliza el aprendizaje profundo, una forma de aprendizaje automático, que es un tipo de inteligencia artificial (IA), para identificar tumores en las imágenes de RM de mama y podría ahorrar tiempo sin comprometer la exactitud.

Los investigadores utilizaron una red neuronal para clasificar segmentos de las imágenes de RM y extraer las características. El algoritmo aprendió a hacer esto por sí solo y el uso del aprendizaje profundo eliminó la necesidad de decirle explícitamente a la computadora qué es lo que debía buscar. Los investigadores probaron el algoritmo procesando imágenes de RM de 277 mujeres, clasificando segmentos dentro de estas imágenes como mostrando o no mostrando tumor. El algoritmo logró una exactitud del 93% en un conjunto de pruebas, mientras que la sensibilidad y especificidad para la detección de tumores fueron del 94% y 92%, respectivamente.

Los investigadores creen que el algoritmo, si está integrado en el flujo de trabajo clínico, tiene el potencial de mejorar la eficiencia de los radiólogos. También podría ahorrar tiempo durante las juntas de tumores al desplazarse automáticamente a los cortes de RM de la mama que muestran lesiones de cáncer, eliminando así el tiempo que de lo contrario se gastaría desplazando manualmente estos cortes. Sin embargo, los investigadores han advertido que el aprendizaje profundo no puede proporcionar la solución completa y que las personas tendrían que trabajar con algoritmos de aprendizaje profundo para alcanzar su potencial.

“La forma en que se integrarán las herramientas de inteligencia artificial en nuestra práctica diaria aún es incierta”, dijo Eskreis-Winkler, MD, quien presentó los datos en el reciente Simposio de Imágenes Mamarias de la Sociedad para Imágenes Mamarias (SBI)/Colegio Americano de Radiología (ACR) . “Así que hay una gran oportunidad para que seamos creativos y proactivos, con el fin de encontrar maneras de aprovechar el poder de la IA para convertirnos en mejores radiólogos y servir mejor a nuestros pacientes”.

Enlace relacionado:
Centro de Cáncer Memorial Sloan Kettering

Ultrasound Imaging System
P12 Elite
Digital X-Ray Detector Panel
Acuity G4
Miembro Plata
X-Ray QA Meter
T3 AD Pro
New
Breast Localization System
MAMMOREP LOOP

Canales

Radiografía

ver canal
Imagen: un algoritmo de aprendizaje profundo detecta los niveles de calcio en la arteria coronaria en tomografías computarizadas de tórax (foto cortesía de Adobe Stock)

IA detecta enfermedades cardíacas ocultas en TC de tórax existentes

El calcio en la arteria coronaria (CAC) es un indicador importante del riesgo cardiovascular, pero su evaluación suele requerir una tomografía computarizada (TC) especializada (gated) que... Más

RM

ver canal
Imagen: los investigadores utilizaron RM y pantalones inspirados en la NASA para mejorar las pruebas de esfuerzo y revelar problemas cardíacos ocultos (foto cortesía de UTA)

Nueva técnica de resonancia magnética revela problemas cardíacos ocultos

Las pruebas de esfuerzo tradicionales, realizadas en una máquina de resonancia magnética (RM), requieren que los pacientes permanezcan acostados, una posición que mejora artificialmente... Más

Ultrasonido

ver canal
Imagen: el nuevo dispositivo implantable para el tratamiento del dolor crónico es pequeño y flexible (foto cortesía de The Zhou Lab at USC)

Dispositivo inalámbrico para el manejo del dolor crónico reduce la necesidad de analgésicos y cirugía

El dolor crónico afecta a millones de personas en todo el mundo, lo que a menudo provoca discapacidad a largo plazo y dependencia de opioides, los cuales conllevan riesgos importantes de efectos... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

Imaginología General

ver canal
Imágenes de resultado positivo en examen de detección de colonografía por TC en un hombre asintomático de 67 años (foto cortesía de Radiology)

La colonografía por TC supera a la prueba de ADN en heces para la detección del cáncer de colon

Dado que el cáncer colorrectal sigue siendo la segunda causa principal de muertes relacionadas con el cáncer a nivel mundial, la detección temprana mediante pruebas de cribado es fundamental... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.