Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




Un mapa de ruta nuevo define las prioridades en la investigación de la IA para la imagenología médica

Por el equipo editorial de MedImaging en español
Actualizado el 30 Apr 2019
Un informe que establece una hoja de ruta describiendo las prioridades en la investigación fundamental y traslacional en inteligencia artificial (IA) para la imagenología médica fue publicado en la revista Radiology. A principios del verano, se publicará un segundo informe sobre la investigación traslacional en IA que se enfoca en problemas de la IA en el mundo real, en la revista Journal of the American College of Radiology (JACR).

Ambos informes son el resultado de un taller convocado en agosto pasado por el Instituto Nacional de Imágenes Biomédicas y Bioingeniería en el NIH para explorar el futuro de la IA en la imagenología médica. El taller reunió a sociedades especializadas del gobierno, la industria, la academia y la radiología para crear una hoja de ruta que establece un camino para la investigación fundamental en IA y la investigación traslacional necesaria para entregar la IA a la práctica clínica. Los organizadores del taller esperan continuar con su trabajo juntos para continuar identificando las lagunas de conocimiento y priorizar las necesidades de investigación para promover el desarrollo de la inteligencia artificial para la imagenología médica.

“Todos apreciamos que la NIBIB haya sido el anfitrión de este importante evento. El taller fue una gran oportunidad para que la comunidad de radiología se reuniera para discutir las necesidades y los desafíos de la investigación de inteligencia artificial que enfrenta nuestra especialidad y desarrollar una hoja de ruta para la investigación futura en imágenes médicas”, dijo Bibb Allen, MD, copresidente del taller y director médico del Instituto de Ciencia de Datos de la ACR. “Esperamos poder publicar la hoja de ruta para la investigación traslacional, incluidos los métodos para resolver algunos de estos problemas de la IA en el mundo real”.

“Este taller de colaboración entre los NIH y las principales organizaciones de radiología fue fundamental para reunir a las partes interesadas clave para definir las oportunidades atractivas para la investigación de la IA en las imágenes médicas”, dijo Curtis P. Langlotz, MD, PhD, copresidente del taller, profesor de radiología e informática biomédica, director del Centro de Inteligencia Artificial en Medicina e Imagenología en la Universidad de Stanford, y enlace de la junta de la RSNA para la tecnología de la información y el congreso anual. “Los resultados publicados del evento ayudan a preparar el escenario para que nuestros colegas y otros grupos interesados trabajen para llevar estas innovaciones a los pacientes”.

“El taller amplió nuestro conocimiento colectivo sobre la utilidad potencial de la Inteligencia Artificial para mejorar la eficiencia y la exactitud de los sistemas de diagnóstico”, dijo Steven E. Seltzer, MD, FACR, investigador de políticas de salud y ciencias de la Academia de Radiología e Investigación de Imágenes Biomédicas. “Si en el futuro, la necesidad de un diagnóstico de exactitud requiere una recopilación de imágenes de los sistemas de radiología, patología y ‘ómica’ en una ‘Cabina de mando’ de diagnóstico, el observador humano necesitará una ayuda considerable de las computadoras para extraer información óptima de múltiples fuentes dispares. La IA puede ser un ingrediente clave en este proceso”.

Enlace relacionado:
Adjustable Mobile Barrier
M-458
Ultrasonic Pocket Doppler
SD1
Ultrasound Table
Women’s Ultrasound EA Table
Medical Radiographic X-Ray Machine
TR30N HF

Canales

Radiografía

ver canal
Imagen: la prueba de detección \"dos por uno\" podría ayudar a detectar las principales causas de muerte de mujeres en todo el mundo (foto cortesía de Shutterstock)

Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... Más

Ultrasonido

ver canal
Imagen: el parche de ultrasonido realiza simultáneamente imágenes de ultrasonido y medición de la presión arterial de ambas arterias carótidas (Fotografía cortesía de KIST)

Parche de ultrasonido desechable supera el rendimiento de los dispositivos existentes

Los dispositivos portátiles de ultrasonido se utilizan ampliamente en el diagnóstico, el monitoreo de la rehabilitación y la telemedicina. Sin embargo, la mayoría de los modelos... Más

Medicina Nuclear

ver canal
Imagen: el Dr. Glenn Bauman, científico de LHSCRI, posa frente al escáner PET (Foto cortesía de LHSCRI).

Nueva solución de imagen mejora la supervivencia de los pacientes con cáncer de próstata recurrente

La detección del cáncer de próstata recurrente sigue siendo uno de los mayores desafíos en oncología, ya que los métodos de imagen estándar, como las g... Más

Imaginología General

ver canal
Imagen: Concepto de los SCNP fotosensibles (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste

Las tecnologías de imagen médica enfrentan desafíos constantes para capturar vistas precisas y detalladas de los procesos internos, especialmente en enfermedades como el cáncer,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.