Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Método nuevo de IA predice el cáncer de mama con cinco años de antelación

Por el equipo editorial de MedImaging en español
Actualizado el 22 May 2019
Imagen: Se espera que un método nuevo de inteligencia artificial, para detectar el cáncer de mama, supere los métodos existentes que no cumplen con sus predicciones (Fotografía cortesía del MIT).
Imagen: Se espera que un método nuevo de inteligencia artificial, para detectar el cáncer de mama, supere los métodos existentes que no cumplen con sus predicciones (Fotografía cortesía del MIT).
Investigadores de dos instituciones importantes han desarrollado una herramienta nueva con métodos avanzados de inteligencia artificial (IA) para predecir el riesgo futuro de cáncer de mama en una mujer. Los modelos disponibles actualmente que utilizan factores como el historial familiar y la genética no son suficientes para predecir la probabilidad de que una mujer sea diagnosticada con cáncer de mama.

En algunos modelos, se agregó la densidad mamaria (la cantidad de tejido denso en comparación con la cantidad de tejido graso en la mama en una mamografía) para mejorar la evaluación del riesgo, ya que es un factor de riesgo independiente para el cáncer de mama. Dado que se basa en una evaluación subjetiva que puede variar entre los radiólogos, se ha estudiado el aprendizaje profundo, un subconjunto de la IA en el que las computadoras aprenden con el ejemplo, como una forma de estandarizar y automatizar estas mediciones.

Adam Yala, un candidato a Ph.D. en el Instituto de Tecnología de Massachusetts (MIT), en colaboración con Regina Barzilay, Ph.D., una experta en inteligencia artificial y profesora de MIT, y Constance Lehman, MD, Ph.D., jefe de imagenología de mama en el Hospital General de Massachusetts y profesora de radiología en la facultad de medicina de Harvard, compararon recientemente tres métodos diferentes de evaluación de riesgos.

El primer modelo se basó en los factores de riesgo tradicionales, el segundo en el aprendizaje profundo que usó solo la mamografía y el tercero en un enfoque híbrido que incorporó tanto la mamografía como los factores de riesgo tradicionales en el modelo de aprendizaje profundo. Los investigadores utilizaron casi 90.000 mamografías de detección de alta resolución de aproximadamente 40.000 mujeres para entrenar, validar y probar el modelo de aprendizaje profundo. Pudieron obtener resultados de cáncer a través de la vinculación con un registro regional de tumores.

Los modelos de aprendizaje profundo produjeron una discriminación de riesgo sustancialmente mejorada con respecto al modelo de Tyrer-Cuzick, un estándar clínico actual que utiliza la densidad mamaria en el riesgo de factorización. Al comparar el modelo de aprendizaje profundo híbrido con la densidad de los senos, los investigadores encontraron que las pacientes con senos no densos y con alto riesgo evaluado por el modelo tenían 3,9 veces la incidencia de cáncer de las pacientes con senos densos y bajo riesgo evaluado por el modelo. Las ventajas se mantuvieron para los diferentes subgrupos de mujeres.

“Hay mucha más información en una mamografía que solo las cuatro categorías de densidad mamaria. A través del uso del modelo de aprendizaje profundo, aprendemos señales sutiles que son indicativas de un futuro cáncer”, dijo Yala. “Hay una gran cantidad de información en una mamografía de resolución completa que los modelos de riesgo de cáncer de mama no han podido usar hasta hace poco. Con el aprendizaje profundo, podemos aprender a aprovechar esa información directamente de los datos y crear modelos que sean significativamente más exactos en diversas poblaciones”.

“A diferencia de los modelos tradicionales, nuestro modelo de aprendizaje profundo funciona igualmente bien en diversas razas, edades e historias familiares”, dijo la Dra. Barzilay. “Hasta ahora, las mujeres afroamericanas se encontraban en una clara desventaja al momento de realizarles una evaluación de riesgo exacta del futuro cáncer de mama. Nuestro modelo de IA ha cambiado eso”.

“Un elemento faltante para apoyar programas de detección más efectivos y personalizados ha sido las herramientas de evaluación de riesgos que sean fáciles de implementar y que funcionen en toda la diversidad de mujeres a las que atendemos”, dijo el Dr. Lehman. “Estamos encantados con nuestros resultados y ansiosos por trabajar en estrecha colaboración con nuestros sistemas de atención médica, nuestros proveedores y, lo más importante, nuestros pacientes para incorporar este descubrimiento en resultados mejorados para todas las mujeres”.

Enlace relacionado:
Instituto de Tecnología de Massachusetts, MIT

New
Diagnostic Ultrasound System
DC-80A
Ultrasound Imaging System
P12 Elite
Ultra-Flat DR Detector
meX+1717SCC
New
High-Precision QA Tool
DEXA Phantom

Canales

RM

ver canal
Imagen: una resonancia magnética cardíaca con contraste de un paciente con miocardiopatía hipertrófica considerado por MAARS con alto riesgo de muerte súbita (foto cortesía de la Universidad Johns Hopkins)

Modelo de IA supera a los médicos en la identificación de pacientes con mayor riesgo de paro cardíaco

La miocardiopatía hipertrófica es una de las cardiopatías hereditarias más comunes y una de las principales causas de muerte súbita cardíaca en jóvenes y deportistas.... Más

Ultrasonido

ver canal
Imagen: el nuevo dispositivo implantable para el tratamiento del dolor crónico es pequeño y flexible (foto cortesía de The Zhou Lab at USC)

Dispositivo inalámbrico para el manejo del dolor crónico reduce la necesidad de analgésicos y cirugía

El dolor crónico afecta a millones de personas en todo el mundo, lo que a menudo provoca discapacidad a largo plazo y dependencia de opioides, los cuales conllevan riesgos importantes de efectos... Más

Medicina Nuclear

ver canal
Imagen: la herramienta de diagnóstico podría mejorar las decisiones de diagnóstico y tratamiento para pacientes con infecciones pulmonares crónicas (foto cortesía de SNMMI)

Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar

Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más

Imaginología General

ver canal
Imágenes de resultado positivo en examen de detección de colonografía por TC en un hombre asintomático de 67 años (foto cortesía de Radiology)

La colonografía por TC supera a la prueba de ADN en heces para la detección del cáncer de colon

Dado que el cáncer colorrectal sigue siendo la segunda causa principal de muertes relacionadas con el cáncer a nivel mundial, la detección temprana mediante pruebas de cribado es fundamental... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.