Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Deascargar La Aplicación Móvil




Google muestra que la IA puede predecir el cáncer de pulmón a partir de los exámenes de TC

Por el equipo editorial de Medimaging en español
Actualizado el 12 Jun 2019
Print article
Imagen: Una investigación nueva de Google muestra cómo la IA puede predecir el cáncer de pulmón mediante tomografías computarizadas (Fotografía cortesía de Getty Images).
Imagen: Una investigación nueva de Google muestra cómo la IA puede predecir el cáncer de pulmón mediante tomografías computarizadas (Fotografía cortesía de Getty Images).
Google LLC (Mountain View, CA, EUA) ha compartido nuevas investigaciones que demuestran cómo la inteligencia artificial (IA) puede predecir el cáncer de pulmón con el fin de aumentar las posibilidades de supervivencia de las personas en riesgo en todo el mundo.

Desde 2017, Google ha explorado cómo se puede usar la IA para abordar los desafíos en la detección de personas con alto riesgo de cáncer de pulmón con una prueba de TC de dosis más baja que lleva a diagnósticos poco claros, procedimientos innecesarios posteriores y costos financieros. Google utilizó los avances en el modelado volumétrico en 3D junto con los conjuntos de datos de sus socios para modelar la predicción del cáncer de pulmón y sentar las bases para pruebas clínicas futuras.

En general, los radiólogos pasan por cientos de imágenes en 2D en una sola tomografía computarizada, y el cáncer es minúsculo y difícil de detectar. Los investigadores de Google crearon un modelo que puede generar la predicción general de malignidad del cáncer de pulmón (visto en volumen en 3D), así como identificar tejido maligno sutil en los pulmones (nódulos pulmonares). El modelo también puede tener en cuenta la información de exploraciones anteriores, que puede ser útil para predecir el riesgo de cáncer de pulmón, dado que la tasa de crecimiento de los nódulos pulmonares sospechosos puede ser un indicador de malignidad.

Los investigadores aprovecharon 45.856 casos de cribado con TAC de tórax sin identificación y validaron los resultados con un segundo conjunto de datos y también compararon sus resultados con seis radiólogos certificados de los EUA. Descubrieron que cuando utilizaban una única tomografía computarizada para el diagnóstico, su modelo funcionó a la par o mejor que los seis radiólogos y detectó un 5% más de casos de cáncer, al tiempo que reducía los exámenes falsos positivos en más del 11% en comparación con los radiólogos no ayudados que participaron en el estudio. El enfoque de Google logró un AUC (una métrica común utilizada en el aprendizaje automático que proporciona una medida agregada para el desempeño de clasificación) de 94,4%.

La investigación de Google demuestra que solo el 2-4% de los pacientes elegibles en los Estados Unidos son evaluados para detectar el cáncer de pulmón, demostrando la posibilidad de que la IA aumente la exactitud y la consistencia, ayudando a acelerar la adopción del cribado para el cáncer de pulmón a nivel mundial. Google ahora planea realizar estudios adicionales para evaluar su impacto y utilidad en la práctica clínica. Colabora con el equipo de Google Cloud Healthcare y de Life Sciences para servir el modelo a través de la API de Cloud Healthcare y mantiene conversaciones con sus socios en todo el mundo con el fin de continuar la validación de la investigación adicional y el despliegue.

Enlace relacionado:
Google LLC


Print article
Radcal

Canales

Ultrasonido

ver canal
Imagen: Una nueva investigación afirma que la búsqueda de rayos X con mejores imágenes puede llevar a una mayor exposición (Fotografía cortesía de Getty Images).

Llegada de la RD podría conducir a una fluencia de la colimación

El cambio a la radiografía digital (RD) puede dar lugar a un “arrastre de dosis”, en el que los niveles de radiación aumentan lentamente con el tiempo a medida que los radiólogos intentan producir una... Más

Imaginología General

ver canal
Imagen: El profesor Lyes Kadem (I) y el duplicador del corazón izquierdo personalizado de activación doble (Fotografía cortesía de la Universidad de Concordia).

RM de contraste de fase puede evaluar la función de las válvulas artificiales del corazón

De acuerdo con un estudio nuevo, las imágenes de resonancia magnética (RM) sin contraste de fase no invasivas y libres de radiación pueden detectar obstrucciones en las válvulas cardíacas mecánicas de... Más

TI en Imaginología

ver canal
Imagen: El software empresarial uPath proporciona mejores herramientas de patología digital (Fotografía cortesía de Roche).

Un software de patología digital mejora la eficiencia del flujo de trabajo

Una plataforma de software novedosa reduce drásticamente los tiempos de generación de imágenes, integra el análisis automatizado de imágenes y permite un mejor intercambio de casos entre patólogos.... Más
Copyright © 2000-2019 Globetech Media. All rights reserved.