Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Algoritmo de aprendizaje automático diagnostica el cáncer antes y con exactitud

Por el equipo editorial de MedImaging en español
Actualizado el 03 Sep 2019
Imagen: Los investigadores utilizaron imágenes sintéticas para entrenar un algoritmo de aprendizaje automático que puede ayudar a detectar el cáncer de mama de manera más rápida y correcta (Fotografía cortesía de la Universidad del Sur de California).
Imagen: Los investigadores utilizaron imágenes sintéticas para entrenar un algoritmo de aprendizaje automático que puede ayudar a detectar el cáncer de mama de manera más rápida y correcta (Fotografía cortesía de la Universidad del Sur de California).
Un equipo de investigadores de la Universidad del Sur de California (Los Ángeles, CA, EUA) utilizó imágenes sintéticas para entrenar un algoritmo de aprendizaje automático que puede ayudar a detectar el cáncer de mama de manera más rápida y correcta. Los investigadores primero crearon modelos basados en la física que mostraban niveles variables de propiedades clave y luego usaron miles de entradas de datos derivados de esos modelos para entrenar el algoritmo de aprendizaje automático. Este tipo de técnicas se vuelven importantes en situaciones donde los datos son escasos, como en el caso de las imágenes médicas.

Los investigadores utilizaron unas 12.000 imágenes sintéticas para entrenar el algoritmo de aprendizaje automático. Al proporcionar suficientes ejemplos, el algoritmo puede obtener diferentes características inherentes a un tumor benigno versus un tumor maligno y hacer la determinación correcta. Después de lograr una exactitud de clasificación de casi el 100% en otras imágenes sintéticas, los investigadores probaron el algoritmo en imágenes del mundo real para determinar su exactitud en proporcionar un diagnóstico y midieron los resultados contra los diagnósticos confirmados por biopsia asociados con esas imágenes. El algoritmo de aprendizaje automático logró una tasa de exactitud de aproximadamente el 80% y ahora se refina aún más mediante el uso de más imágenes del mundo real como entradas.

Con base en los principios utilizados para entrenar el algoritmo de aprendizaje automático para el diagnóstico de cáncer de mama, los investigadores ahora buscan entrenar el algoritmo para diagnosticar mejor el cáncer renal a través de imágenes de TC con contraste. Los investigadores creen que es poco probable que los algoritmos de aprendizaje automático reemplacen el papel de un radiólogo en la determinación del diagnóstico, pero sí podrán servir como una herramienta para guiar a los radiólogos a llegar a conclusiones más exactas.

“El consenso general es que estos tipos de algoritmos tienen un papel importante que desempeñar, incluso de los profesionales de la imagenología a los que impactará más. Sin embargo, estos algoritmos serán más útiles cuando no sirven como cajas negras”, dijo Assad Oberai, profesor de Hughes en el Departamento de Ingeniería Aeroespacial y Mecánica de la Escuela de Ingeniería Viterbi de la USC. “¿Qué fue lo que vio que lo llevó a la conclusión final? El algoritmo debe ser explicable para que funcione según lo previsto”.

Enlace relacionado:
Universidad del Sur de California

Breast Localization System
MAMMOREP LOOP
MRI System
nanoScan MRI 3T/7T
X-Ray Illuminator
X-Ray Viewbox Illuminators
Radiation Safety Barrier
RayShield Intensi-Barrier

Canales

Radiografía

ver canal
Imagen: la prueba de detección \"dos por uno\" podría ayudar a detectar las principales causas de muerte de mujeres en todo el mundo (foto cortesía de Shutterstock)

Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... Más

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: los cristales de perovskita se cultivan en condiciones cuidadosamente controladas a partir de la masa fundida (foto cortesía de Mercouri Kanatzidis/Northwestern University)

Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico

Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más

Imaginología General

ver canal
Imagen: Concepto de los SCNP fotosensibles (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste

Las tecnologías de imagen médica enfrentan desafíos constantes para capturar vistas precisas y detalladas de los procesos internos, especialmente en enfermedades como el cáncer,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.