Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Las tomografías computarizadas rutinarias pueden identificar a personas en riesgo de diabetes tipo 2

Por el equipo editorial de MedImaging en español
Actualizado el 15 Aug 2024
Imagen: El análisis automatizado de TC multiorgánico identificó a personas con alto riesgo de diabetes y afecciones asociadas (foto cortesía de Shutterstock)
Imagen: El análisis automatizado de TC multiorgánico identificó a personas con alto riesgo de diabetes y afecciones asociadas (foto cortesía de Shutterstock)

La creciente prevalencia de la diabetes y sus complicaciones ha generado la necesidad de explorar métodos diagnósticos avanzados que puedan mejorar la detección temprana y la evaluación del riesgo. Ahora, un nuevo estudio ha demostrado cómo las tomografías computarizadas (TC), que se utilizan habitualmente para cribados de salud, también pueden emplearse para identificar a individuos en riesgo de desarrollar diabetes tipo 2. Este concepto, conocido como imagenología oportunista, aprovecha los datos de imagen rutinarios para obtener información sobre la salud general de un paciente, aumentando el valor de las tomografías más allá de su uso tradicional.

En este estudio realizado en la Facultad de Medicina de la Universidad Sungkyunkwan (Seúl, Corea del Sur), los investigadores evaluaron el poder predictivo de los marcadores automatizados derivados de TC para la diabetes y sus afecciones relacionadas. La cohorte estuvo compuesta por 32.166 adultos, de 25 años o más, que se sometieron a exámenes de salud que incluyeron exploraciones PET/TC con 18F-fluorodesoxiglucosa (18F-FDG). Se emplearon algoritmos avanzados de aprendizaje profundo para realizar la segmentación 3D y la cuantificación de diversas características anatómicas, como la grasa visceral, la grasa subcutánea, la masa muscular, la densidad del hígado y el calcio aórtico a partir de las imágenes de TC. Al inicio del estudio, el el 6 % de los participantes vivían con diabetes y, durante un período de seguimiento medio de 7,3 años, el 9 % desarrolló la enfermedad.

Los hallazgos del estudio, publicado en la revista Radiology, revelaron que las tomografías computarizadas pueden identificar de manera efectiva a personas con riesgo elevado de diabetes y problemas de salud relacionados. Entre los marcadores derivados de la TC, la medición de la grasa visceral fue particularmente eficaz para predecir la probabilidad de desarrollar diabetes. Cuando este marcador se analizó junto con otros (área muscular, fracción de grasa hepática y calcificación aórtica), la precisión predictiva aumentó aún más. Los indicadores basados en TC también demostraron ser más eficaces que los factores de riesgo tradicionales para predecir afecciones asociadas con la diabetes, como el hígado graso identificado mediante ecografía, puntuaciones de calcio en las arterias coronarias superiores a 100, osteoporosis y sarcopenia. Estos conocimientos sugieren que los marcadores derivados de la TC podrían perfeccionar significativamente los enfoques tradicionales utilizados en la detección de diabetes y la estratificación del riesgo, ofreciendo una herramienta de evaluación más completa en entornos clínicos.

“Los resultados son alentadores ya que demuestran el potencial de ampliar el papel de la imagenología por TC, pasando del diagnóstico convencional de enfermedades al cribado proactivo oportunista. Este análisis de TC automatizado mejora la predicción de riesgos y las estrategias de intervención temprana para la diabetes y problemas de salud relacionados”, afirmó el autor principal del estudio, Seungho Ryu, MD, Ph.D., del Hospital Kangbuk Samsung de la Facultad de Medicina de la Universidad Sungkyunkwan. "Al integrar estas técnicas de imagen avanzadas en los cribados de salud oportunistas, los clínicos pueden identificar a individuos con alto riesgo de diabetes y sus complicaciones de manera más precisa y temprana que con el enfoque actual. Esto podría conducir a intervenciones más personalizadas y oportunas, mejorando en última instancia los resultados para los pacientes”.

Enlaces relacionados:
Facultad de Medicina de la Universidad Sungkyunkwan

Computed Tomography System
Aquilion ONE / INSIGHT Edition
Portable Color Doppler Ultrasound System
S5000
New
Post-Processing Imaging System
DynaCAD Prostate
X-Ray Illuminator
X-Ray Viewbox Illuminators

Canales

Radiografía

ver canal
Imagen: un algoritmo de aprendizaje profundo detecta los niveles de calcio en la arteria coronaria en tomografías computarizadas de tórax (foto cortesía de Adobe Stock)

IA detecta enfermedades cardíacas ocultas en TC de tórax existentes

El calcio en la arteria coronaria (CAC) es un indicador importante del riesgo cardiovascular, pero su evaluación suele requerir una tomografía computarizada (TC) especializada (gated) que... Más

RM

ver canal
Imagen: los investigadores utilizaron RM y pantalones inspirados en la NASA para mejorar las pruebas de esfuerzo y revelar problemas cardíacos ocultos (foto cortesía de UTA)

Nueva técnica de resonancia magnética revela problemas cardíacos ocultos

Las pruebas de esfuerzo tradicionales, realizadas en una máquina de resonancia magnética (RM), requieren que los pacientes permanezcan acostados, una posición que mejora artificialmente... Más

Ultrasonido

ver canal
Imagen: el nuevo dispositivo implantable para el tratamiento del dolor crónico es pequeño y flexible (foto cortesía de The Zhou Lab at USC)

Dispositivo inalámbrico para el manejo del dolor crónico reduce la necesidad de analgésicos y cirugía

El dolor crónico afecta a millones de personas en todo el mundo, lo que a menudo provoca discapacidad a largo plazo y dependencia de opioides, los cuales conllevan riesgos importantes de efectos... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.