Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Sistema IA de rayos X de tórax ayuda a verificar colocación del tubo endotraqueal

Por el equipo editorial de MedImaging en español
Actualizado el 07 Jun 2023
Imagen: Los investigadores de la UCLA han demostrado el uso de IA para verificar la colocación del tubo endotraqueal (Fotografía cortesía de Freepik)
Imagen: Los investigadores de la UCLA han demostrado el uso de IA para verificar la colocación del tubo endotraqueal (Fotografía cortesía de Freepik)

Las radiografías de tórax (RxT) sirven como una herramienta vital en las unidades de cuidados intensivos (UCI) para monitorear pacientes en estado crítico que están en dispositivos de soporte vital. Los tubos endotraqueales (TET) se utilizan especialmente para asegurar la apertura de las vías respiratorias y facilitar la ventilación pulmonar. Después de la intubación, se toma una RxT para confirmar la colocación del tubo, que necesita ajuste en alrededor del 15 % de los pacientes. Las UCI de alta capacidad pueden producir cientos de RxT diariamente para verificar la colocación del tubo. Dado el gran volumen de casos y la necesidad urgente de intervención en caso de colocación incorrecta del TET, los médicos de la UCI a menudo revisan preliminarmente la RxT para rectificar instantáneamente un tubo fuera de lugar, en lugar de esperar las lecturas de radiología. Sin embargo, debido a la baja visibilidad de los tubos, la superposición de la anatomía y los dispositivos médicos y las preocupaciones sobre la calidad de la imagen, evaluar la colocación del tubo puede ser un desafío sin monitores de alta calidad y habilidades de interpretación de radiología refinadas.

En esta situación, un sistema de inteligencia artificial (IA) puede proporcionar un soporte de decisión dual: ayuda de detección de TET y alerta de verificación de posición. A pesar de la abundante literatura sobre IA en radiología, pocos sistemas se utilizan de forma rutinaria en la práctica clínica. Muchos sistemas tienen pruebas experimentales limitadas y rara vez se someten a evaluación en aplicaciones del mundo real. Anteriormente, investigadores de UCLA (Los Ángeles, CA, EUA) desarrollaron y probaron un sistema de IA que podría ayudar a verificar la colocación del TET y enviar alertas a los médicos si la punta está colocada incorrectamente. En un nuevo estudio, este sistema de IA se aplicó para verificar la colocación de TET en la práctica clínica y evaluar su desempeño en el mundo real a través de los comentarios de los usuarios para evaluar la posibilidad de un uso más amplio. La evaluación clínica demostró un rendimiento encomiable del sistema de IA de rayos X de tórax y los hallazgos coincidieron con las pruebas experimentales anteriores.

Durante un lapso de 17 meses en la práctica clínica, se obtuvieron 214 imágenes de RxT para verificar la colocación del TET con asistencia de IA por parte de médicos de la UCI. El sistema, basado en la plataforma de inteligencia artificial cognitiva SimpleMind e integrado en un flujo de trabajo clínico, reconoció automáticamente el TET y verificó su posición en relación con la tráquea y la carina. La superposición del TET generada por el sistema de IA y los mensajes de alerta de mala colocación se compararon con los informes de radiología como punto de referencia. También se realizó una encuesta para evaluar la utilidad del sistema de IA en la práctica clínica. Los mensajes de alerta que significan mala colocación o no detección del TET tuvieron un valor predictivo positivo del 42 % (21/50) y un valor predictivo negativo del 98 % (161/164) según los informes de radiología. En la encuesta, tanto los radiólogos como los médicos de la UCI confirmaron que estaban de acuerdo con los resultados de la IA y los encontraron beneficiosos.

Por lo tanto, los resultados de la encuesta de usuarios revelaron un amplio acuerdo con los resultados de la IA y la idoneidad de las alertas entre los radiólogos y los médicos de la UCI. Con respecto a la utilidad del sistema, las calificaciones de los usuarios sugirieron que, si bien la IA no ahorra tiempo, mejora su confianza y se alinea con sus expectativas de flujo de trabajo para la IA. Los investigadores concluyeron que el rendimiento del sistema de IA en el uso clínico real era comparable al observado en experimentos anteriores. Con base en esto y en los resultados de la encuesta de los médicos, el sistema se puede implementar aún más, utilizando la información de esta evaluación para refinar el algoritmo y mejorar la garantía de calidad del sistema de IA.

Enlaces relacionados:
UCLA  

Portable Color Doppler Ultrasound Scanner
DCU10
New
Mammography System (Analog)
MAM VENUS
New
Diagnostic Ultrasound System
DC-80A
Multi-Use Ultrasound Table
Clinton

Canales

RM

ver canal
Imagen: los investigadores utilizaron RM y pantalones inspirados en la NASA para mejorar las pruebas de esfuerzo y revelar problemas cardíacos ocultos (foto cortesía de UTA)

Nueva técnica de resonancia magnética revela problemas cardíacos ocultos

Las pruebas de esfuerzo tradicionales, realizadas en una máquina de resonancia magnética (RM), requieren que los pacientes permanezcan acostados, una posición que mejora artificialmente... Más

Ultrasonido

ver canal
Imagen: el nuevo dispositivo implantable para el tratamiento del dolor crónico es pequeño y flexible (foto cortesía de The Zhou Lab at USC)

Dispositivo inalámbrico para el manejo del dolor crónico reduce la necesidad de analgésicos y cirugía

El dolor crónico afecta a millones de personas en todo el mundo, lo que a menudo provoca discapacidad a largo plazo y dependencia de opioides, los cuales conllevan riesgos importantes de efectos... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

Imaginología General

ver canal
Imágenes de resultado positivo en examen de detección de colonografía por TC en un hombre asintomático de 67 años (foto cortesía de Radiology)

La colonografía por TC supera a la prueba de ADN en heces para la detección del cáncer de colon

Dado que el cáncer colorrectal sigue siendo la segunda causa principal de muertes relacionadas con el cáncer a nivel mundial, la detección temprana mediante pruebas de cribado es fundamental... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.