Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelos de IA superan a expertos humanos en la identificación de cáncer de ovario en imágenes de ultrasonido

Por el equipo editorial de MedImaging en español
Actualizado el 15 Jan 2025
Print article
Imagen: La inteligencia artificial puede mejorar el diagnóstico del cáncer de ovario (foto cortesía de 123RF)
Imagen: La inteligencia artificial puede mejorar el diagnóstico del cáncer de ovario (foto cortesía de 123RF)

Los tumores de ovario se detectan con frecuencia, a menudo por casualidad. En muchas regiones, hay una escasez significativa de especialistas en ecografía, lo que ha generado preocupaciones sobre intervenciones médicas innecesarias y diagnósticos de cáncer tardíos. Un nuevo estudio, publicado en Nature Medicine, revela que los modelos basados en inteligencia artificial (IA) pueden superar a los expertos humanos en la identificación del cáncer de ovario a partir de imágenes de ecografía.

En el estudio internacional dirigido por el Instituto Karolinska (Solna, Suecia), los investigadores desarrollaron y validaron modelos de redes neuronales que pueden distinguir entre lesiones ováricas benignas y malignas. La IA se entrenó y probó en más de 17.000 imágenes de ultrasonidos de 3.652 pacientes en 20 hospitales de ocho países. Luego, los investigadores compararon el rendimiento diagnóstico de estos modelos de IA con un gran grupo de examinadores de ultrasonidos tanto expertos como menos experimentados. Los resultados mostraron que los modelos de IA lograron una tasa de precisión del 86,3%, superando el 82,6% de los expertos y el 77,7% de los no expertos.

Los modelos de IA también podrían reducir la necesidad de derivaciones a expertos. En un escenario de triaje simulado, la IA redujo el número de derivaciones en un 63% y la tasa de diagnósticos erróneos en un 18%. Esto podría conducir a una atención más rápida y rentable para las pacientes con lesiones ováricas. A pesar de estos resultados prometedores, los investigadores enfatizan la necesidad de realizar más estudios para comprender plenamente las limitaciones clínicas y el potencial de los modelos de redes neuronales. Actualmente, están realizando ensayos clínicos prospectivos para evaluar la seguridad y la eficacia de la herramienta de IA en la práctica clínica diaria. Las investigaciones futuras también incluirán un estudio multicéntrico aleatorizado para evaluar su impacto en la gestión de las pacientes y los costos de la atención médica.

“Con una investigación y un desarrollo continuos, las herramientas basadas en IA pueden ser una parte integral de la atención médica del mañana, aliviando a los expertos y optimizando los recursos hospitalarios, pero debemos asegurarnos de que puedan adaptarse a diferentes entornos clínicos y grupos de pacientes”, dijo Filip Christiansen del Instituto Karolinska, quien es el primer autor conjunto.

Portable Color Doppler Ultrasound Scanner
DCU10
X-ray Diagnostic System
FDX Visionary-A
New
Biopsy Software
Affirm® Contrast
X-Ray Illuminator
X-Ray Viewbox Illuminators

Print article

Canales

RM

ver canal
Imagen: las imágenes de RM axial abreviadas muestran una masa irregular de 7 mm con margen irregular (foto cortesía de Radiology)

Examen de resonancia magnética más corto detecta eficazmente el cáncer en mamas densas

Las mujeres con mamas extremadamente densas se enfrentan a un mayor riesgo de no recibir un diagnóstico de cáncer de mama, ya que el tejido glandular y fibroso denso puede ocultar los tumores... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

Imaginología General

ver canal
Imagen: El cinturón de TC por ultrasonido podría facilitar el seguimiento de pacientes con afecciones cardíacas y pulmonares (foto cortesía de la Universidad de Bath)

Dispositivo portátil pionero ofrece una alternativa revolucionaria a las tomografías computarizadas

Actualmente, los pacientes con afecciones como insuficiencia cardíaca, neumonía o dificultad respiratoria suelen requerir múltiples procedimientos de diagnóstico por imagen... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.