Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Esaote

Provides medical imaging solutions in ultrasound and dedicated MRI, and healthcare IT, technical service and interven... más Productos destacados: More products

Eventos

14 mar 2019 - 17 mar 2019

Un brazo robótico optimiza las pruebas con sondas de ultrasonido

Por el equipo editorial de Medimaging en español
Actualizado el 03 Dec 2018
Print article
Imagen: Un brazo robótico con dedos personalizados ayuda a probar las sondas de ultrasonido (Fotografía cortesía de Esaote).
Imagen: Un brazo robótico con dedos personalizados ayuda a probar las sondas de ultrasonido (Fotografía cortesía de Esaote).
Una nueva célula robótica ofrece una solución integrada para hacer que la prueba de las sondas transductoras de ultrasonido sea más eficiente y rastreable.

La célula robótica, desarrollada en colaboración entre Esaote (Génova, Italia) y el Instituto BioRobotics de la Scuola Superiore Sant'Anna (Pontedera, Italia), consiste en un brazo de robot colaborativo de Universal Robots (Odense, Dinamarca) y una pinza Schunk equipada con dedos personalizados que, con la ayuda de un operador humano, puede verificar la posición correcta de la sonda durante la prueba. Para aumentar la reproducibilidad y repetibilidad durante las pruebas, la célula robótica automatiza el proceso.

De este modo, los usuarios tienen datos más precisos, incluida la medición más importante que caracteriza una sonda de ultrasonido, la medición del eco del pulso. La medición del eco del pulso de cada elemento de la matriz, que identifica la forma de onda, la calidad de la forma de banda y la amplitud, consiste simplemente en recibir un pulso de ultrasonido enviado a un tanque de agua desde la propia sonda y reflejado desde un objetivo metálico. Los parámetros de desempeño de la sonda que se pueden analizar incluyen calidad de imagen (SNR), profundidad de diagnóstico máxima, frecuencias operativas y muchos otros.

Con el operador humano trabajando junto al robot, sin la necesidad de tecnologías externas, el humano puede realizar todas las tareas de manipulación altamente precisas, al monitorizar visualmente el proceso e interactuar fácilmente con el robot. Al robot se le exigen todas las tareas repetitivas, que cubren acciones que requieren un bajo nivel de conocimientos, lo que aumenta la productividad del proceso. De este modo, la célula robótica puede permitir la ejecución precisa del posicionamiento de la sonda en el tanque de agua, en términos de la resolución espacial para todos los grados de libertad utilizados para la alineación de la sonda durante las pruebas.

“La célula robótica ha alcanzado dos objetivos; el primero es automatizar el procedimiento para la operación de las pruebas; el segundo es mantener en primer plano el papel del hombre. Los operadores de Esaote interactuarán con el robot y lo apoyarán durante las pruebas”, dijo Marco Controzzi, del Instituto BioRobotics. “Esta línea de investigación refleja la misión de ‘Interacción Humano-Robot’ del laboratorio de robótica colaborativa del Instituto BioRobotics. Imaginamos una sinergia entre hombres y robots, combinando las ventajas de la producción manual con la precisión y la repetibilidad de la automatización”.

Un transductor de ultrasonido consiste típicamente en 128-512 elementos piezoeléctricos que están dispuestos en matrices lineales o curvilíneas, con cada elemento igual o menor que ½ longitud de onda de ancho. El propósito del transductor es convertir la energía eléctrica en energía sónica mecánica y viceversa, basándose en el efecto piezoeléctrico. Un transductor de ultrasonido estándar se compone de una cerámica piezoeléctrica, un sustrato de soporte de goma dura, varias capas de adaptación acústica (generalmente de una a cuatro) y una lente de goma de silicona.

Enlace relacionado:
Esaote
Instituto BioRobotics de la Scuola Superiore Sant'Anna
Universal Robots



Print article
Radcal
Italray

Canales

Radiografía

ver canal
Imagen: Las pruebas de aisladores cristalinos pueden medir los niveles de radiación de fondo (Fotografía cortesía de la Universidad Estatal de Carolina del Norte).

Unas pruebas cristalinas evalúan rápidamente la exposición a la radiación

Un estudio nuevo afirma que el análisis de los aisladores cristalinos que se encuentran en la mayoría de los dispositivos electrónicos modernos, podría facilitar la dosimetría de respuesta de emergencia... Más

Medicina Nuclear

ver canal
Imagen: La plataforma de radiocirugía giroscópica ZAP-X (Fotografía cortesía de ZAP Surgical Systems).

Una plataforma de radiocirugía giroscópica hace la ablación de tumores de cerebro

Una plataforma nueva de radioterapia (RT) administra radiocirugía estereotáctica de dosis altas (SRS) para extirpar de forma no invasiva los tumores cerebrales y otras afecciones intracraneales seleccionadas.... Más

Imaginología General

ver canal
Imagen: El nuevo sistema de resonancia magnética, Magnetom Lumina 3T (Fotografía cortesía de Siemens Healthineers).

Un escáner de resonancia magnética de gran apertura mejora la satisfacción de los pacientes.

Un dispositivo innovador de imágenes de resonancia magnética (RM) utiliza una tecnología centrada en el paciente para simplificar y acortar los flujos de trabajo y aumentar la productividad, la reproducibilidad... Más

TI en Imaginología

ver canal
Imagen: El software empresarial uPath proporciona mejores herramientas de patología digital (Fotografía cortesía de Roche).

Un software de patología digital mejora la eficiencia del flujo de trabajo

Una plataforma de software novedosa reduce drásticamente los tiempos de generación de imágenes, integra el análisis automatizado de imágenes y permite un mejor intercambio de casos entre patólogos.... Más

Industria

ver canal
Imagen: El crecimiento del mercado mundial de imágenes mamarias es impulsado principalmente por los avances tecnológicos y la creciente incidencia del cáncer de mama (Fotografía cortesía de iStock).

El mercado mundial de imagenología mamaria valdrá 4.600 millones de dólares en el año 2023

Se proyecta que el mercado mundial de imágenes mamarias crezca a una TCAC de 8,0% desde 3.100 millones de dólares en 2018 para llegar a 4.600 millones de dólares en 2023, impulsado principalmente por los... Más
Copyright © 2000-2019 Globetech Media. All rights reserved.