Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Deascargar La Aplicación Móvil




Un sistema nuevo de IA da prioridad a los exámenes de rayos-X del tórax con hallazgos críticos

Por el equipo editorial de Medimaging en español
Actualizado el 11 Feb 2019
Print article
Imagen: Ejemplos de radiografías con prioridad correcta e incorrecta. (a) La radiografía fue informada mostrando un derrame pleural derecho grande (flecha). Esto fue correctamente priorizado como urgente. (b) Se notificó que la radiografía muestra “lucencia en el vértice izquierdo sospechoso de neumotórax”. Esto se priorizó como normal. En revisión por tres radiólogos independientes, la radiografía se consideró unánimemente normal. (c) Una radiografía se informó mostrando una consolidación proyectada detrás del corazón (flecha). El sistema de inteligencia artificial pasó por alto el hallazgo y el estudio se priorizó incorrectamente como normal (Fotografía cortesía de la RSNA).
Imagen: Ejemplos de radiografías con prioridad correcta e incorrecta. (a) La radiografía fue informada mostrando un derrame pleural derecho grande (flecha). Esto fue correctamente priorizado como urgente. (b) Se notificó que la radiografía muestra “lucencia en el vértice izquierdo sospechoso de neumotórax”. Esto se priorizó como normal. En revisión por tres radiólogos independientes, la radiografía se consideró unánimemente normal. (c) Una radiografía se informó mostrando una consolidación proyectada detrás del corazón (flecha). El sistema de inteligencia artificial pasó por alto el hallazgo y el estudio se priorizó incorrectamente como normal (Fotografía cortesía de la RSNA).
Un equipo de investigadores del Reino Unido ha capacitado a un sistema de inteligencia artificial (IA) para interpretar y priorizar las radiografías de tórax anormales con hallazgos críticos, creando así el potencial para reducir la acumulación de exámenes y brindar atención médica urgente a los pacientes con mayor rapidez.

A nivel mundial, las radiografías de tórax representan el 40% de todas las imágenes de diagnóstico y la cantidad de exámenes puede generar importantes atrasos en los centros de atención médica. El aprendizaje profundo (AP), un tipo de IA que puede ser capacitada para reconocer patrones sutiles en imágenes médicas, se considera un medio automático para reducir esta acumulación e identificar exámenes que merecen atención inmediata, especialmente en sistemas de atención médica financiados con fondos públicos.

En su estudio, los investigadores utilizaron 470.388 radiografías de tórax en adultos para desarrollar un sistema de IA que podría identificar hallazgos clave. Los informes radiológicos fueron preprocesados utilizando Procesamiento de Lenguaje Natural (NLP, por sus siglas en inglés), un algoritmo importante del sistema de IA que extrae etiquetas de texto escrito. Para cada radiografía, el sistema interno de los investigadores requirió una lista de etiquetas que indicaban qué anomalías específicas eran visibles en la imagen.

El NLP analizó el informe radiológico para priorizar cada imagen como crítica, urgente, no urgente o normal. Luego, se entrenó un sistema de inteligencia artificial para visión computacional utilizando imágenes de rayos X etiquetadas para predecir la prioridad clínica solo a partir de las apariencias. Los investigadores probaron el desempeño del sistema para la priorización en una simulación utilizando un conjunto independiente de 15.887 imágenes. El sistema de IA distingue las radiografías de tórax normales con alta exactitud. Las simulaciones mostraron que los hallazgos críticos recibieron la opinión de un radiólogo experto en 2,7 días, en promedio, con el enfoque de IA, significativamente más rápido que el promedio de 11,2 días para la práctica real.

“Los resultados iniciales reportados aquí son emocionantes, ya que demuestran que un sistema de inteligencia artificial puede ser entrenado exitosamente usando una gran base de datos radiológicos adquiridos de forma rutinaria”, dijo el coautor del estudio, Giovanni Montana, PhD., anteriormente del King's College de Londres en Londres y actualmente en la Universidad de Warwick en Coventry, Inglaterra. “Con una mayor validación clínica, se espera que esta tecnología reduzca la carga de trabajo de un radiólogo de manera significativa al detectar todos los exámenes normales, de modo que se pueda dedicar más tiempo a aquellos que requieren más atención”.

Enlace relacionado:

Print article
Radcal

Canales

Imaginología General

ver canal
Imagen: El Dr. Ashish Diwan (I) y el Dr. Kyle Sheldrick (D) (Fotografía cortesía de la UNSW).

Método de post procesamiento aumenta la exactitud de las resonancias magnéticas

Una técnica nueva de resonancia magnética (RM) mejora la exactitud del análisis de los discos espinales degenerados del 70% con los métodos actuales, al 97%, según un estudio nuevo. La técnica de variación... Más

TI en Imaginología

ver canal
Imagen: El software empresarial uPath proporciona mejores herramientas de patología digital (Fotografía cortesía de Roche).

Un software de patología digital mejora la eficiencia del flujo de trabajo

Una plataforma de software novedosa reduce drásticamente los tiempos de generación de imágenes, integra el análisis automatizado de imágenes y permite un mejor intercambio de casos entre patólogos.... Más
Copyright © 2000-2019 Globetech Media. All rights reserved.