Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Un algoritmo de IA identifica los tumores grandes más rápido que otros métodos

Por el equipo editorial de MedImaging en español
Actualizado el 27 Mar 2019
Los científicos de computación de la Universidad de Alberta (Alberta, Canadá) han desarrollado una red neuronal que supera a otros métodos avanzados para identificar tumores de pulmón a partir de imágenes de resonancia magnética (RM), creando el potencial para ayudar a reducir el daño al tejido sano durante los tratamientos de radiación.

Ubicar los tumores pulmonares utilizando exámenes de resonancia magnética es un desafío, ya que se mueven significativamente cuando el paciente respira y las imágenes también pueden ser difíciles de interpretar. Los investigadores “entrenaron” la red neuronal en un conjunto de imágenes de resonancia magnética en las que los médicos habían identificado anteriormente tumores de pulmón. Luego, la red procesó un enorme conjunto de imágenes para saber qué apariencia tienen los tumores y qué propiedades comparten. La red neuronal se probó contra exámenes que podían o no contener tumores. Después de que la red neuronal fue entrenada, los investigadores la probaron contra otra técnica desarrollada recientemente, al comparar los dos sistemas con la identificación manual de tumores por un experto en oncología de radiación. El nuevo algoritmo superó a la otra técnica reciente en cada medida de evaluación utilizada por los investigadores.

“Los algoritmos como el desarrollado en nuestro laboratorio se pueden usar para generar un modelo específico para para el diagnóstico y el tratamiento quirúrgico de los pacientes”, dijo Pierre Boulanger, Presidente de Investigación de Cisco en Soluciones para el Cuidado de la Salud de la Universidad de Alberta. “Las regiones tumorales en los resultados de los exámenes pueden ser muy sutiles, e incluso una vez identificadas, deben rastrearse con el tiempo a medida que el tumor se mueve con la respiración. El nuevo algoritmo es capaz de combinar muchas posibilidades para encontrar los mejores descriptores para identificar regiones insalubres en un examen”.

Enlace relacionado:
Universidad de Alberta

Digital X-Ray Detector Panel
Acuity G4
New
Mammo DR Retrofit Solution
DR Retrofit Mammography
Diagnostic Ultrasound System
DC-80A
Breast Localization System
MAMMOREP LOOP

Canales

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: los cristales de perovskita se cultivan en condiciones cuidadosamente controladas a partir de la masa fundida (foto cortesía de Mercouri Kanatzidis/Northwestern University)

Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico

Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más

Imaginología General

ver canal
Imagen: la solución Angio-CT integra los últimos avances en imágenes de intervención (foto cortesía de Canon Medical)

Avanzada solución de angio-TC ofrece nuevas posibilidades terapéuticas

Mantener la precisión y la seguridad en radiología intervencionista es un desafío constante, especialmente a medida que los procedimientos complejos requieren tanto alta precisión... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.