Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA mejora la detección de fracturas en TC de trauma de cuerpo entero

Por el equipo editorial de MedImaging en español
Actualizado el 12 Oct 2022
Print article
Imagen: El algoritmo de IA puede ayudar a evitar fracturas pasadas por alto en los exámenes de TC de cuerpo completo (Fotografía cortesía de Pexels)
Imagen: El algoritmo de IA puede ayudar a evitar fracturas pasadas por alto en los exámenes de TC de cuerpo completo (Fotografía cortesía de Pexels)

El servicio de emergencia es un entorno con un riesgo potencial de errores de diagnóstico durante la atención traumatológica, en particular de fracturas. En la atención primaria de pacientes con múltiples traumatismos, se recomienda la tomografía computarizada de cuerpo completo como estándar de atención. Está bien establecido que la tomografía computarizada es superior a las radiografías simples en la evaluación de fracturas. No obstante, los diagnósticos pasados por alto son comunes. Los métodos de aprendizaje profundo de la red neuronal convolucional (CNN) ahora se usan ampliamente en medicina porque mejoran la precisión del diagnóstico, disminuyen las interpretaciones erróneas y mejoran la eficiencia. Ahora, un nuevo estudio descubrió que con la asistencia del modelo CNN, los cirujanos mostraron una sensibilidad mejorada para detectar fracturas y se redujo el tiempo de lectura e interpretación de las TC, especialmente para los cirujanos ortopédicos con menos experiencia. Los hallazgos sugieren que la aplicación del modelo CNN puede conducir a reducciones en las fracturas pasadas por alto de las imágenes de TC de cuerpo completo y a flujos de trabajo más rápidos y una mejor atención al paciente a través de un diagnóstico eficiente en pacientes con politraumatismos.

En el estudio, los investigadores de la Universidad de Chiba (Chiba, Japón) investigaron si la localización y clasificación automáticas mediante CNN podrían aplicarse a las fracturas de pelvis, costillas y columna vertebral. También examinaron si este algoritmo de detección de fracturas podría ayudar a los médicos en el diagnóstico de fracturas. Se utilizaron un total de 7.664 cortes axiales de TC de cuerpo entero (tórax, abdomen, pelvis) de 200 pacientes. De esto, 5.217 imágenes de 181 pacientes se usaron para entrenamiento y validación, mientras que 2.447 imágenes de 19 pacientes se reservaron para un conjunto de datos de prueba. El conjunto de datos de prueba incluyó un 5,8 % con fracturas de pelvis, un 5,5 % con fracturas de columna y un 3,6 % con fracturas de costillas.

Los investigadores descubrieron que, por sí solo, el algoritmo producía una sensibilidad del 78,6 %, una precisión del 64,8 % y una puntuación F1 de 0,711. Luego, los investigadores evaluaron el desempeño de tres cirujanos ortopédicos en el conjunto de prueba con y sin la ayuda de la IA. Dos cirujanos ortopédicos tenían tres años de experiencia, mientras que el tercer cirujano ortopédico tenía ocho años de experiencia. Los investigadores encontraron que la IA redujo drásticamente el tiempo de diagnóstico de 278,4 segundos a 162,3 segundos para un cirujano, de 205,2 segundos a 144,5 segundos para el segundo cirujano y de 233,7 segundos a 155,5 segundos para el tercer cirujano. Todas las diferencias fueron estadísticamente significativas (p < 0,0001). Con base en los hallazgos, los investigadores concluyeron que la CNN podría servir como un sistema de clasificación en un departamento de emergencias ocupado y que el uso de IA también puede conducir a tiempos de lectura más cortos.

"Aunque cada examen toma solo unos minutos, una reducción en el tiempo de lectura tiene un impacto significativo para el personal de emergencia que toma múltiples decisiones clínicas cada día", escribieron los autores. "Los médicos de urgencias y los radiólogos en turnos largos pueden experimentar fatiga y tensión oculomotora, lo que reduce la capacidad de enfocar y detectar fracturas. El reconocimiento de fracturas mediante CNN no solo es capaz de detectar hallazgos sutiles que son difíciles de diagnosticar para los médicos sin experiencia, sino que también previene errores cognitivos debido a la fatiga humana y la interpretación sesgada de la imagen".

Enlaces relacionados:
Universidad de Chiba  

Portable X-ray Unit
AJEX140H
Ultrasound Table
Women’s Ultrasound EA Table
Digital X-Ray Detector Panel
Acuity G4
New
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices

Print article

Canales

Radiografía

ver canal
Imagen: la evaluación FFR impulsada por IA es comparable a la evaluación convencional (foto cortesía de 123RF)

Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP

La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más

RM

ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más

Ultrasonido

ver canal
Imagen: la herramienta de ultrasonido pulmonar impulsada por IA superó a los expertos humanos en un 9 % en el diagnóstico de tuberculosis (Adobe Stock)

La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis

A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... Más

Medicina Nuclear

ver canal
Imagen: COX-2 en la materia gris cortical humana (foto cortesía de The Journal of Nuclear Medicine; DOI: https://doi.org/10.2967/jnumed.124.268525)

Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación

La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.