Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas

Por el equipo editorial de MedImaging en español
Actualizado el 05 Feb 2025
Imagen: Ejemplos de segmentación clínica y de modelos (Foto cortesía de Radiology, DOI:10.1148/radiol.233029)
Imagen: Ejemplos de segmentación clínica y de modelos (Foto cortesía de Radiology, DOI:10.1148/radiol.233029)

El cáncer de pulmón es el segundo cáncer más común en los Estados Unidos y la principal causa de muerte relacionada con el cáncer. Detectar y segmentar con precisión los tumores de pulmón en las tomografías computarizadas (TC) es esencial para monitorear la progresión, evaluar el tratamiento y planificar la radioterapia. Actualmente, este proceso es realizado manualmente por los médicos, lo que supone una gran carga de trabajo y está sujeto a variabilidad entre especialistas.

Si bien se han aplicado métodos de aprendizaje profundo de IA a la detección y segmentación de tumores, los estudios anteriores se han visto limitados por pequeños conjuntos de datos, entradas manuales y un enfoque en tumores individuales. Estas limitaciones resaltan la necesidad de modelos que puedan proporcionar una delineación sólida y automatizada de tumores en varios entornos clínicos. Ahora, un nuevo estudio publicado en la revista Radiology ha demostrado el potencial de un modelo de aprendizaje profundo capaz de detectar y segmentar con precisión los tumores pulmonares, lo que podría impactar positivamente el tratamiento del cáncer de pulmón.

En este estudio, investigadores de la Facultad de Medicina de la Universidad de Stanford (Stanford, CA, EUA) utilizaron un conjunto de datos a gran escala de TC de rutina previas al tratamiento con radiación para desarrollar un modelo de detección y segmentación de tumores pulmonares con un nivel cercano al de los expertos. Su objetivo era crear un modelo capaz de identificar y segmentar tumores pulmonares en diferentes centros médicos. El equipo utilizó un modelo de aprendizaje profundo U-Net 3D entrenado en 1504 escaneos de TC que incluían 1,828 tumores segmentados, y lo evaluó en 150 escaneos adicionales. Las predicciones del modelo se compararon con volúmenes tumorales delineados por médicos. Se calcularon métricas de rendimiento clave, como sensibilidad, especificidad, tasa de falsos positivos y coeficiente de similitud de Dice (DSC), para evaluar la precisión del modelo. El modelo logró una sensibilidad del 92 % y una especificidad del 82 % en la detección de tumores pulmonares. Para las tomografías con un solo tumor, la mediana del DSC modelo-médico fue de 0,77 y la del DSC médico-médico fue de 0,80. El modelo también funcionó más rápido que los médicos.

Los investigadores creen que la arquitectura 3D U-Net ofrece ventajas sobre los modelos 2D al capturar información entre cortes, lo que ayuda a identificar lesiones más pequeñas que pueden confundirse con otras estructuras. Sin embargo, el modelo tendía a subestimar el volumen del tumor, especialmente en el caso de tumores más grandes, lo que podría afectar el rendimiento. Los investigadores recomiendan integrar este modelo en un flujo de trabajo supervisado por médicos para permitir que los médicos validen y corrijan cualquier lesión mal identificada. También sugieren que se realicen investigaciones futuras para evaluar cómo se puede aplicar el modelo para evaluar la carga tumoral pulmonar general y las respuestas al tratamiento a lo largo del tiempo. Además, proponen explorar si el modelo puede predecir resultados clínicos en combinación con otros modelos pronósticos.

"Hasta donde sabemos, nuestro conjunto de datos de entrenamiento es la mayor colección de tomografías computarizadas y segmentaciones de tumores clínicos de la literatura para construir un modelo de detección y segmentación de tumores pulmonares", afirmó el autor principal del estudio, el Dr. Mehr Kashyap. "Nuestro estudio representa un paso importante hacia la automatización de la identificación y segmentación de tumores pulmonares. Este enfoque podría tener amplias implicaciones, incluida su incorporación en la planificación automatizada del tratamiento, la cuantificación de la carga tumoral, la evaluación de la respuesta al tratamiento y otras aplicaciones radiómicas".

Enlaces relacionados:
Facultad de Medicina de la Universidad de Stanford

Ultrasound Table
Women’s Ultrasound EA Table
Diagnostic Ultrasound System
DC-80A
Digital X-Ray Detector Panel
Acuity G4
Mobile X-Ray System
K4W

Canales

Radiografía

ver canal
Imagen: la prueba de detección \"dos por uno\" podría ayudar a detectar las principales causas de muerte de mujeres en todo el mundo (foto cortesía de Shutterstock)

Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... Más

Ultrasonido

ver canal
Imagen: el parche de ultrasonido realiza simultáneamente imágenes de ultrasonido y medición de la presión arterial de ambas arterias carótidas (Fotografía cortesía de KIST)

Parche de ultrasonido desechable supera el rendimiento de los dispositivos existentes

Los dispositivos portátiles de ultrasonido se utilizan ampliamente en el diagnóstico, el monitoreo de la rehabilitación y la telemedicina. Sin embargo, la mayoría de los modelos... Más

Medicina Nuclear

ver canal
Imagen: los cristales de perovskita se cultivan en condiciones cuidadosamente controladas a partir de la masa fundida (foto cortesía de Mercouri Kanatzidis/Northwestern University)

Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico

Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.