Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de aprendizaje profundo detecta tumores pulmonares en tomografías computarizadas

Por el equipo editorial de MedImaging en español
Actualizado el 05 Feb 2025
Imagen: Ejemplos de segmentación clínica y de modelos (Foto cortesía de Radiology, DOI:10.1148/radiol.233029)
Imagen: Ejemplos de segmentación clínica y de modelos (Foto cortesía de Radiology, DOI:10.1148/radiol.233029)

El cáncer de pulmón es el segundo cáncer más común en los Estados Unidos y la principal causa de muerte relacionada con el cáncer. Detectar y segmentar con precisión los tumores de pulmón en las tomografías computarizadas (TC) es esencial para monitorear la progresión, evaluar el tratamiento y planificar la radioterapia. Actualmente, este proceso es realizado manualmente por los médicos, lo que supone una gran carga de trabajo y está sujeto a variabilidad entre especialistas.

Si bien se han aplicado métodos de aprendizaje profundo de IA a la detección y segmentación de tumores, los estudios anteriores se han visto limitados por pequeños conjuntos de datos, entradas manuales y un enfoque en tumores individuales. Estas limitaciones resaltan la necesidad de modelos que puedan proporcionar una delineación sólida y automatizada de tumores en varios entornos clínicos. Ahora, un nuevo estudio publicado en la revista Radiology ha demostrado el potencial de un modelo de aprendizaje profundo capaz de detectar y segmentar con precisión los tumores pulmonares, lo que podría impactar positivamente el tratamiento del cáncer de pulmón.

En este estudio, investigadores de la Facultad de Medicina de la Universidad de Stanford (Stanford, CA, EUA) utilizaron un conjunto de datos a gran escala de TC de rutina previas al tratamiento con radiación para desarrollar un modelo de detección y segmentación de tumores pulmonares con un nivel cercano al de los expertos. Su objetivo era crear un modelo capaz de identificar y segmentar tumores pulmonares en diferentes centros médicos. El equipo utilizó un modelo de aprendizaje profundo U-Net 3D entrenado en 1504 escaneos de TC que incluían 1,828 tumores segmentados, y lo evaluó en 150 escaneos adicionales. Las predicciones del modelo se compararon con volúmenes tumorales delineados por médicos. Se calcularon métricas de rendimiento clave, como sensibilidad, especificidad, tasa de falsos positivos y coeficiente de similitud de Dice (DSC), para evaluar la precisión del modelo. El modelo logró una sensibilidad del 92 % y una especificidad del 82 % en la detección de tumores pulmonares. Para las tomografías con un solo tumor, la mediana del DSC modelo-médico fue de 0,77 y la del DSC médico-médico fue de 0,80. El modelo también funcionó más rápido que los médicos.

Los investigadores creen que la arquitectura 3D U-Net ofrece ventajas sobre los modelos 2D al capturar información entre cortes, lo que ayuda a identificar lesiones más pequeñas que pueden confundirse con otras estructuras. Sin embargo, el modelo tendía a subestimar el volumen del tumor, especialmente en el caso de tumores más grandes, lo que podría afectar el rendimiento. Los investigadores recomiendan integrar este modelo en un flujo de trabajo supervisado por médicos para permitir que los médicos validen y corrijan cualquier lesión mal identificada. También sugieren que se realicen investigaciones futuras para evaluar cómo se puede aplicar el modelo para evaluar la carga tumoral pulmonar general y las respuestas al tratamiento a lo largo del tiempo. Además, proponen explorar si el modelo puede predecir resultados clínicos en combinación con otros modelos pronósticos.

"Hasta donde sabemos, nuestro conjunto de datos de entrenamiento es la mayor colección de tomografías computarizadas y segmentaciones de tumores clínicos de la literatura para construir un modelo de detección y segmentación de tumores pulmonares", afirmó el autor principal del estudio, el Dr. Mehr Kashyap. "Nuestro estudio representa un paso importante hacia la automatización de la identificación y segmentación de tumores pulmonares. Este enfoque podría tener amplias implicaciones, incluida su incorporación en la planificación automatizada del tratamiento, la cuantificación de la carga tumoral, la evaluación de la respuesta al tratamiento y otras aplicaciones radiómicas".

Enlaces relacionados:
Facultad de Medicina de la Universidad de Stanford

Medical Radiographic X-Ray Machine
TR30N HF
Digital X-Ray Detector Panel
Acuity G4
X-Ray Illuminator
X-Ray Viewbox Illuminators
Portable X-ray Unit
AJEX140H

Canales

Radiografía

ver canal
Imagen: un algoritmo de aprendizaje profundo detecta los niveles de calcio en la arteria coronaria en tomografías computarizadas de tórax (foto cortesía de Adobe Stock)

IA detecta enfermedades cardíacas ocultas en TC de tórax existentes

El calcio en la arteria coronaria (CAC) es un indicador importante del riesgo cardiovascular, pero su evaluación suele requerir una tomografía computarizada (TC) especializada (gated) que... Más

RM

ver canal
Imagen: los investigadores utilizaron RM y pantalones inspirados en la NASA para mejorar las pruebas de esfuerzo y revelar problemas cardíacos ocultos (foto cortesía de UTA)

Nueva técnica de resonancia magnética revela problemas cardíacos ocultos

Las pruebas de esfuerzo tradicionales, realizadas en una máquina de resonancia magnética (RM), requieren que los pacientes permanezcan acostados, una posición que mejora artificialmente... Más

Ultrasonido

ver canal
Imagen: una nueva técnica de imágenes por ultrasonido médico para la monitorización en la cama del paciente podría conducir a una mejor atención al paciente (foto cortesía de Jennifer Mueller/CSU)

Nueva técnica de imágenes por ultrasonido permite el monitoreo en la UCI

La tomografía computarizada por ultrasonido (TCUS) presenta una alternativa más segura a técnicas de imagen como la tomografía computarizada por rayos X (comúnmente conocida... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.