Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Herramienta de IA predice riesgo de cáncer de pulmón a partir de TC de tórax de dosis baja

Por el equipo editorial de MedImaging en español
Actualizado el 17 Jan 2023
Print article
La herramienta de IA predice con precisión el riesgo de cáncer de pulmón para las personas (Fotografía cortesía del Mass General Cancer Center)
La herramienta de IA predice con precisión el riesgo de cáncer de pulmón para las personas (Fotografía cortesía del Mass General Cancer Center)

El cáncer de pulmón es la principal causa de muerte por cáncer en el mundo. Se recomienda la tomografía computarizada de dosis baja (TCBD) de tórax para evaluar a las personas en el grupo etario de 50 a 80 años que tienen un historial significativo de tabaquismo o que actualmente fuman. Los estudios han demostrado que la detección con TCBD puede reducir el riesgo de muerte por cáncer de pulmón hasta en un 24 %. Sin embargo, con el aumento de las tasas de cáncer de pulmón entre los no fumadores, existe la necesidad de nuevas estrategias para detectar y predecir con precisión el riesgo de cáncer de pulmón entre una población más amplia. Ahora, los investigadores han desarrollado y probado una herramienta de inteligencia artificial (IA) que predice con precisión el riesgo de cáncer de pulmón para las personas con o sin un historial significativo de tabaquismo en función del análisis de las exploraciones TCBD de los pacientes.

Con el fin de ayudar a mejorar la eficiencia de la detección del cáncer de pulmón y proporcionar evaluaciones individualizadas, investigadores del Mass General Cancer Center (Boston, MA, EUA), en colaboración con investigadores del Instituto Tecnológico de Massachusetts (MIT, Cambridge, MA, EUA) , han desarrollado Sybil, un modelo de aprendizaje profundo que analiza los escaneos y predice el riesgo de cáncer de pulmón para los próximos uno a seis años. En su estudio, el equipo validó Sybil utilizando tres conjuntos de datos independientes: un conjunto de escaneos de más de 6.000 participantes de NLST (estudio nacional de detección pulmonar de EUA) que Sybil no había visto antes; 8.821 TCBD de EUA; y 12.280 TCBD de Taiwán. El último conjunto de escaneos incluyó a personas con una variedad de antecedentes de tabaquismo, incluidos aquellos que nunca fumaron.

Los investigadores encontraron que Sybil podía predecir con precisión el riesgo de cáncer de pulmón en estos conjuntos. El equipo determinó la precisión de Sybil utilizando el área bajo la curva (AUC), que mide qué tan bien una prueba distingue entre muestras enfermas y normales y en la que 1.0 se considera una puntuación perfecta. Sybil pudo predecir el cáncer en un rango de un año con AUC de 0,92 para los participantes adicionales del NLST, 0,86 para el conjunto de datos del MGH y 0,94 para el conjunto de datos de Taiwán. Sybil predijo el cáncer de pulmón dentro de los seis años con AUC de 0,75, 0,81 y 0,80, respectivamente, para los tres conjuntos de datos. Los investigadores ahora comenzarán un ensayo clínico prospectivo para probar Sybil en el mundo real y ver cómo puede ayudar a los radiólogos.

"Sybil requiere solo una TCBD y no depende de los datos clínicos ni de las anotaciones del radiólogo", dijo el coautor Florian Fintelmann, MD, del Departamento de Radiología, División de Imagen e Intervención Torácica del Hospital General de Massachusetts. "Fue diseñado para ejecutarse en tiempo real en el fondo de una estación de lectura de radiología estándar que permite el soporte de decisiones clínicas en el punto de atención".

 

3T MRI Scanner
MAGNETOM Cima.X
Wall Fixtures
MRI SERIES
Radiology Software
DxWorks
New
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices

Print article

Canales

Radiografía

ver canal
Imagen: la evaluación FFR impulsada por IA es comparable a la evaluación convencional (foto cortesía de 123RF)

Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP

La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más

RM

ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más

Ultrasonido

ver canal
Imagen: la herramienta de ultrasonido pulmonar impulsada por IA superó a los expertos humanos en un 9 % en el diagnóstico de tuberculosis (Adobe Stock)

La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis

A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... Más

Medicina Nuclear

ver canal
Imagen: COX-2 en la materia gris cortical humana (foto cortesía de The Journal of Nuclear Medicine; DOI: https://doi.org/10.2967/jnumed.124.268525)

Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación

La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.