Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Eventos

28 ene 2019 - 01 feb 2019

Un centro clínico de los NIH libera el conjunto de datos de imágenes de tomografía computarizada

Por el equipo editorial de Medimaging en español
Actualizado el 06 Sep 2018
Print article
Imagen: Inclusión de una lesión visualizada en el conjunto de prueba DeepLesion (Fotografía cortesía de los NIH).
Imagen: Inclusión de una lesión visualizada en el conjunto de prueba DeepLesion (Fotografía cortesía de los NIH).
DeepLesion, un conjunto de datos a gran escala de imágenes de TC compiladas por el Centro Clínico de los Institutos Nacionales de Salud de los EUA (NIH, Bethesda, MD, EUA), se ha puesto a disposición del público para ayudar a la comunidad científica a mejorar la exactitud para la detección de lesiones. DeepLesion incluye un conjunto de datos con 32.735 lesiones en 32.120 cortes de TC de 10.594 estudios de 4.427 pacientes, únicos, anónimos, cuyas imágenes de TC se enviaron a los radiólogos en el Centro Clínico de los NIH para su interpretación.

Los radiólogos de los NIH midieron y marcaron los hallazgos clínicamente significativos con la ayuda de una herramienta de marcador electrónico compleja que proporciona flechas, líneas, diámetros y texto que pueden indicar la ubicación exacta y el tamaño de una lesión para que los expertos puedan identificar el crecimiento o una nueva enfermedad. Los marcadores, incluida una gama de datos médicos retrospectivos, se usaron para desarrollar el conjunto de datos DeepLesion. A diferencia de la mayoría de los conjuntos de datos de imágenes médicas de lesiones actualmente disponibles, que solo pueden detectar un tipo de lesión, la base de datos contiene todos los hallazgos radiológicos críticos, como nódulos pulmonares, tumores hepáticos, ganglios linfáticos agrandados, etc.

El conjunto de datos publicado es lo suficientemente grande como para formar una red neuronal profunda, que podría permitir a la comunidad científica crear un detector de lesiones universales a gran escala con un marco unificado, que eventualmente podría servir como una herramienta de detección inicial para otros sistemas especializados entrenados en ciertos tipos de lesiones. Además, DeepLesion marca múltiples hallazgos en una imagen de tomografía computarizada, lo que permite a los investigadores analizar su relación para hacer nuevos descubrimientos, permitiendo la evaluación de la carga tumoral en todo el cuerpo. DeepLesion se introdujo en un estudio publicado el 20 de julio de 2018 en la revista Journal of Medical Imaging.

“Se han recopilado grandes cantidades de anotaciones clínicas y se han almacenado en los sistemas de archivo y comunicación de imágenes de los hospitales. Estos tipos de anotaciones, también conocidos como marcadores, generalmente son marcados por radiólogos durante su flujo de trabajo diario para resaltar hallazgos significativos de la imagen que pueden servir como referencia para estudios posteriores”, dijeron el autor principal, Ronald Summers, MD, PhD, y sus colegas. “Proponemos extraer y cosechar estos abundantes datos médicos retrospectivos para construir un conjunto de datos de imágenes de lesiones a gran escala”.

“En el futuro, el Centro Clínico de los NIH espera seguir mejorando el conjunto de datos DeepLesion mediante la recopilación de más datos, mejorando así su exactitud de detección”, afirmó el NIH en un comunicado de prensa. “La capacidad de detección universal de lesiones se volverá más confiable una vez que los investigadores puedan aprovechar la información en 3D y del tipo de lesiones. Es posible ampliar aún más DeepLesion a otras modalidades de imagenología como la resonancia magnética y, además, combinar datos de varios hospitales”.

Enlace relacionado:
Centro Clínico de los Institutos Nacionales de Salud de los EUA


Print article
Clear Image Devices
Radcal

Canales

Radiografía

ver canal
Imagen: Un tablero de instrumentos con un detector de pantalla plana revista automáticamente la salud del sistema de RD (Fotografía cortesía de Konica Minolta).

Un tablero de control con pantalla plana analiza el desempeño por región anatómica

Un tablero de control con detector de pantalla plana (FPD) integral para radiografía digital (RD) recolecta y agrega automáticamente los datos de salud y uso del sistema en visiones analíticas potentes.... Más

Medicina Nuclear

ver canal
Imagen: un nuevo estudio sugiere que la WBRT que evita el hipocampo puede preservar la función cognitiva (Fotografía cortesía de Getty Images).

Una técnica nueva de radioterapia cerebral total reduce el riesgo de deterioro neurocognitivo

Según un estudio nuevo, los efectos cognitivos adversos de la radioterapia cerebral total (WBRT, por sus siglas en inglés) se pueden mitigar de manera significativa mediante el uso de una técnica de preservación... Más

TI en Imaginología

ver canal
Imagen: Un simple portal para pacientes almacena imágenes e informes (Fotografía cortesía de Intelerad).

Un portal centrado en los pacientes facilita el acceso a la imagenología directa

Un portal nuevo de imagenología brinda a los pacientes acceso directo a su historial de exámenes, imágenes e informes en cualquier momento y en cualquier lugar. La plataforma de imágenes en la nube... Más

Industria

ver canal
Imagen: El crecimiento continuo del mercado global de equipos de detección y seguimiento de radiación se debe a la creciente demanda de los centros de asistencia sanitaria (Fotografía cortesía de Technavio Research).

El mercado mundial de detección de la radiación está impulsado por la demanda de las instituciones de salud

Se proyecta que el mercado mundial de equipos de detección y seguimiento de la radiación crezca en una TCAC de casi el 6% durante el período 2018-2022, impulsado por la creciente demanda de los centros... Más
Copyright © 2000-2018 Globetech Media. All rights reserved.