Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




Red neural artificial mejora la detección del cáncer de próstata

Por el equipo editorial de MedImaging en español
Actualizado el 06 May 2019
Imagen: Las nuevas investigaciones sugieren que la inteligencia artificial pronto hará redundantes a los radiólogos (Fotografía cortesía de 123rf.com).
Imagen: Las nuevas investigaciones sugieren que la inteligencia artificial pronto hará redundantes a los radiólogos (Fotografía cortesía de 123rf.com).
Un sistema nuevo de inteligencia artificial (IA) identifica y predice la agresividad del cáncer de próstata (CaP) con el mismo nivel de exactitud que los radiólogos experimentados.

Desarrollado en la Universidad de California, Los Ángeles (UCLA; EUA), FocalNet es una red neuronal convolucional (CNN) que utiliza un algoritmo con más de un millón de variables que se pueden entrenar. La CNN se entrenó con el uso de imágenes de resonancia magnética multiparamétricas (mp-RM) de 417 hombres con CaP antes de la prostatectomía laparoscópica asistida por robot (RALP). Para aprender cómo clasificar la agresividad del tumor utilizando la puntuación de Gleason (GS), los resultados se compararon con la muestra de patología real. Luego compararon los resultados del sistema de IA con las lecturas de los radiólogos de UCLA que tenían más de 10 años de experiencia.

Los resultados revelaron que en el análisis de las características operativas del receptor de respuesta libre (FROC) para la detección de lesiones, FocalNet mostró una sensibilidad del 89,7% y 87,9% para las lesiones índice y las lesiones clínicamente significativas, respectivamente. Con la comparación con el desempeño prospectivo de los radiólogos que utilizan las guías de diagnóstico actuales, FocalNet demostró una sensibilidad de detección para lesiones clínicamente significativas (80,5%) comparable a la de los radiólogos con al menos 10 años de experiencia (83,9%). El estudio se presentó en el Simposio Internacional IEEE sobre Imágenes Biomédicas (ISBI), que se realizó en abril de 2019 en Venecia (Italia).

“La RM multiparamétrica se considera la mejor modalidad de imagenología no invasiva para diagnosticar el cáncer de próstata. Sin embargo, la mp-RM para el diagnóstico del CaP está actualmente limitada por los criterios de interpretación cualitativos o semicuantitativos, generando una variabilidad entre los diferentes lectores y una capacidad subóptima para evaluar la agresividad de la lesión”, concluyeron el autor principal, Kyunghyun Sung, del departamento de radiología de UCLA y colegas. “Las CNN son un método poderoso para aprender automáticamente las características discriminatorias para varias tareas, incluida la detección del cáncer”.

Las CNN utilizan una cascada de muchas capas de unidades de procesamiento no lineales para la extracción y conversión de características, y cada capa sucesiva utiliza la salida de la capa anterior como entrada para formar una representación jerárquica.

Enlace relacionado:
Universidad de California, Los Ángeles

Multi-Use Ultrasound Table
Clinton
Medical Radiographic X-Ray Machine
TR30N HF
X-Ray Illuminator
X-Ray Viewbox Illuminators
Biopsy Software
Affirm® Contrast

Canales

Radiografía

ver canal
Imagen: la prueba de detección \"dos por uno\" podría ayudar a detectar las principales causas de muerte de mujeres en todo el mundo (foto cortesía de Shutterstock)

Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... Más

Ultrasonido

ver canal
Imagen: el parche de ultrasonido realiza simultáneamente imágenes de ultrasonido y medición de la presión arterial de ambas arterias carótidas (Fotografía cortesía de KIST)

Parche de ultrasonido desechable supera el rendimiento de los dispositivos existentes

Los dispositivos portátiles de ultrasonido se utilizan ampliamente en el diagnóstico, el monitoreo de la rehabilitación y la telemedicina. Sin embargo, la mayoría de los modelos... Más

Medicina Nuclear

ver canal
Imagen: el Dr. Glenn Bauman, científico de LHSCRI, posa frente al escáner PET (Foto cortesía de LHSCRI).

Nueva solución de imagen mejora la supervivencia de los pacientes con cáncer de próstata recurrente

La detección del cáncer de próstata recurrente sigue siendo uno de los mayores desafíos en oncología, ya que los métodos de imagen estándar, como las g... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.