Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
ICRco

iCAD

Offers a comprehensive range of upgradeable computer aided detection (CAD) and workflow solutions to support rapid an... más Productos destacados: More products

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.
11 jun 2020 - 13 jun 2020

IA puede mejorar la eficiencia y exactitud de las imágenes del cáncer de mama

Por el equipo editorial de MedImaging en español
Actualizado el 19 Aug 2019
Print article
Imagen: Comparación de la tomosíntesis digital de mama con la mamografía (Fotografía cortesía de Carestream Health).
Imagen: Comparación de la tomosíntesis digital de mama con la mamografía (Fotografía cortesía de Carestream Health).
De acuerdo con un estudio nuevo, la inteligencia artificial (IA) puede ayudar a acortar el tiempo de lectura de la tomosíntesis digital de mama (DBT), a la vez que mantiene o mejora la exactitud.

Investigadores de la Universidad de Pensilvania (UPENN: Filadelfia, PA, EUA), iCAD (Nashua, NH, EUA) y otras instituciones, desarrollaron un sistema de IA de aprendizaje profundo que es capaz de identificar lesiones sospechosas de los tejidos blandos y calcificadas en imágenes de DBT. El sistema fue entrenado en un gran conjunto de datos DBT, y a continuación, se evaluó su desempeño haciendo que 24 radiólogos, incluidos 13 subespecialistas de mama, leyeran, cada uno, 260 exámenes DBT con y sin asistencia de la IA. Los exámenes incluyeron 65 casos de cáncer.

Los resultados revelaron que el desempeño del radiólogo para la detección de lesiones malignas aumentó de 0,795 sin IA a 0,852 con IA, mientras que el tiempo de lectura disminuyó en un 52,7%, de 64,1 segundos sin IA a 30,4 segundos con IA. La sensibilidad aumentó de 77% sin IA a 85% con IA, la especificidad aumentó de 62,7% sin a 69,6% con IA, y la tasa de rellamado, para los no cancerosos, disminuyó de 38% a 30,9% con la IA. El estudio fue publicado el 31 de julio de 2019 en la revista Radiology: Artificial Intelligence.

“En general, los lectores pudieron aumentar su sensibilidad en un ocho por ciento, reducir su tasa de rellamado en un siete por ciento y reducir su tiempo de lectura a la mitad cuando usaban la IA simultáneamente mientras leían casos de DBT”, dijo la autora principal, la profesora Emily Conant, MD, jefa de imágenes mamarias en la UPENN. “El uso simultáneo de la IA con DBT aumenta la detección de cáncer y puede hacer que los tiempos de lectura se reduzcan al tiempo que lleva leer solo la mamografía digital”.

La DBT adquiere múltiples imágenes en un rango angular limitado para producir un conjunto de imágenes reconstruidas, que luego se pueden ver individual o secuencialmente en un bucle de cine, y en una imagen 3D de la mama, que se puede ver en cortes estrechos, similar a las tomografías computarizadas . Mientras que en la mamografía 2D convencional, los tejidos superpuestos pueden enmascarar áreas sospechosas, las imágenes en 3D eliminan la superposición, haciendo que las anomalías sean más fáciles de reconocer. Se estima que la DBT en 3D reemplazará a la mamografía convencional dentro de diez años.

Enlace relacionado:
Universidad de Pensilvania
iCAD



Print article
CIRS
Radcal

Canales

Radiografía

ver canal
Imagen: Esquema de un dispositivo para imágenes de rayos X de campo oscuro (Fotografía cortesía de la TUM)

Radiografías pulmonares de bajas dosis facilitan el diagnóstico del coronavirus

Un método novedoso de rayos X que implica una radiación significativamente menor que la tomografía computarizada (TC) puede ayudar a identificar las anomalías en la COVID-19. Desarrollado en la Universidad... Más

RM

ver canal
Imagen: Se deben evitar los exámenes de resonancia magnética en pacientes con COVID-19 (Fotografía cortesía de Shutterstock)

Se debe evitar la toma de exámenes de resonancia magnética en los pacientes con COVID-19

Una nueva declaración de orientación del Colegio Americano de Radiología (ACR; Reston, VA, EUA) recomienda que los radiólogos eviten realizar exámenes de resonancia magnética (MRI) en pacientes diagnosticados... Más

TI en Imaginología

ver canal
Imagen: El software empresarial uPath proporciona mejores herramientas de patología digital (Fotografía cortesía de Roche).

Un software de patología digital mejora la eficiencia del flujo de trabajo

Una plataforma de software novedosa reduce drásticamente los tiempos de generación de imágenes, integra el análisis automatizado de imágenes y permite un mejor intercambio de casos entre patólogos.... Más

Industria

ver canal
Imagen: AI-Rad Companion Chest CT genera automáticamente informes estandarizados, reproducibles y cuantitativos en formato DICOM SC (Fotografía cortesía de Siemens Healthineers).

Software para la TC de tórax basada en IA de Siemens Healthineers recibe aprobación de la FDA de los EUA

La Administración de Medicamentos y Alimentos de los Estados Unidos (FDA) aprobó tres módulos de AI-Rad Companion Chest CT, un asistente de software inteligente de Siemens Healthineers (Erlangen, Alemania)... Más
Copyright © 2000-2020 Globetech Media. All rights reserved.