Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Técnica de TEP de súper resolución mejora la imagenología del cerebro

Por el equipo editorial de MedImaging en español
Actualizado el 05 Jul 2021
Imagen: El mismo corte de TEP fantasma de Hoffman reconstruido con diferentes técnicas de imagenología (Fotografía cortesía del Gordon Center for Medical Imaging)
Imagen: El mismo corte de TEP fantasma de Hoffman reconstruido con diferentes técnicas de imagenología (Fotografía cortesía del Gordon Center for Medical Imaging)
Un estudio nuevo muestra cómo la combinación de la tomografía por emisión de positrones (TEP) con un dispositivo externo de seguimiento del movimiento de la cabeza puede crear imágenes muy detalladas del cerebro.

Investigadores del Institut Polytechnique de Paris (Francia), el Hospital General de Massachusetts (MGH; Boston, EUA) y otras instituciones, llevaron a cabo un estudio que tenía como objetivo utilizar la superresolución (SR) para mejorar la resolución de la imagen TEP mediante la explotación de la información de muestreo espacial obtenida de múltiples adquisiciones del mismo objeto. Para hacerlo, utilizaron la cámara de seguimiento de infrarrojos (IR) Polaris Vega de alta resolución, que tiene una exactitud de seguimiento de hasta 0,12 mm isotrópica y una frecuencia de cuadro de 60 Hz.

Luego, se utilizó una transformación que vinculaba el espacio de coordenadas Polaris y del escáner con el mismo objeto de referencia, utilizando mínimos cuadrados, para alinear espacialmente los dos instrumentos. Para habilitar la SR, se desarrolló un algoritmo de reconstrucción TEP que incorporó los datos de seguimiento de alta resolución de Polaris Vega para corregir el movimiento de la línea de respuesta medida (LOR) evento por evento. A continuación, se realizaron modelos de simulación utilizando un fantasma Hoffman y un mono rhesus.

Los resultados mostraron que, tanto para los estudios de fantasma de Hoffman como de primates, la reconstrucción de SR produjo imágenes TEP con una resolución espacial visiblemente aumentada, lo que permite una mejor visualización de pequeñas estructuras fantasmas cerebrales corticales y subcorticales. En general, el método SR logró un mejor control del ruido que la reconstrucción estática con el mismo tamaño de vóxel. Para el fantasma de Hoffman, las imágenes SR mostraron una correspondencia mejorada con la TC de alta resolución, en comparación con los métodos convencionales. El estudio fue presentado en el congreso anual virtual de la Sociedad de Medicina Nuclear e Imágenes Moleculares, celebrado durante junio de 2021.

“Este trabajo muestra que se pueden obtener imágenes TEP con una resolución que supera la resolución del escáner al hacer uso, quizás de manera contraria a la intuición, del movimiento generalmente no deseado del paciente”, dijo Yanis Chemli, MSc, PhD, del Centro Gordon para Imagenología Médica en el MGH. “Nuestra técnica no solo compensa los efectos negativos del movimiento de la cabeza en la calidad de la imagen de la TEP, sino que también aprovecha la mayor información de muestreo asociada con la obtención de imágenes de objetivos en movimiento para mejorar la resolución efectiva de la TEP”.

La TEP es una técnica de imagenología de medicina nuclear que produce una imagen en 3D de los procesos funcionales del cuerpo. El sistema detecta pares de rayos gamma emitidos indirectamente por un trazador de radionúclidos emisor de positrones. Las concentraciones de trazadores dentro del cuerpo se construyen en 3D mediante análisis informático. En los escáneres TEP-TC más modernos, las imágenes en 3D a menudo se logran con la ayuda de una tomografía computarizada de rayos X realizada en el paciente durante la misma sesión, en la misma máquina.

Enlace relacionado:
Institut Polytechnique de Paris
Hospital General de Massachusetts

Post-Processing Imaging System
DynaCAD Prostate
Ultrasound Table
Women’s Ultrasound EA Table
Digital Radiographic System
OMNERA 300M
X-ray Diagnostic System
FDX Visionary-A

Canales

Radiografía

ver canal
Imagen: la prueba de detección \"dos por uno\" podría ayudar a detectar las principales causas de muerte de mujeres en todo el mundo (foto cortesía de Shutterstock)

Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... Más

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: los cristales de perovskita se cultivan en condiciones cuidadosamente controladas a partir de la masa fundida (foto cortesía de Mercouri Kanatzidis/Northwestern University)

Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico

Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.