Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA en la mamografía podría reducir drásticamente la carga de trabajo en radiología

Por el equipo editorial de MedImaging en español
Actualizado el 14 Jul 2021
Imagen: Transpara AI puede reducir la carga de trabajo de las mamografías (Fotografía cortesía de ScreenPoint Medical)
Imagen: Transpara AI puede reducir la carga de trabajo de las mamografías (Fotografía cortesía de ScreenPoint Medical)
Según un estudio nuevo, el uso de inteligencia artificial (IA) en la detección del cáncer de mama podría reducir la carga de trabajo de los radiólogos hasta en un 70%, sin reducir las tasas de detección de cáncer.

El estudio, realizado por investigadores del Instituto Maimónides de Investigación Biomédica (IMIBIC; Córdoba, España) y ScreenPoint Medical (Nijmegen, Países Bajos), comparó una estrategia de clasificación de IA simulada utilizando el software Transpara AI de ScreenPoint con la lectura doble o simple por radiólogos en un análisis retrospectivo de 15.987 imágenes de tomosíntesis digital de mama (DBT) y de mamografía digital (MD) del ensayo de detección de tomosíntesis, de Córdoba.

Los exámenes incluyeron 98 cánceres detectados por cribado y 15 cánceres de intervalo. Los resultados mostraron que, en comparación con la lectura doble de imágenes DBT, la DBT con IA daría como resultado un 72,5% menos de carga de trabajo, una sensibilidad no inferior y una tasa de recuperación un 16,7% más baja. Se obtuvieron resultados similares para la MD con IA; en comparación con la lectura doble original de imágenes de MD, la MD con IA daría como resultado un 29,7% menos de carga de trabajo, un 25% más de sensibilidad y un 27,1% menos de tasa de recuperación. El estudio fue publicado el 4 de mayo de 2021 en la revista Radiology.

“La lectura de las imágenes DBT puede tardar el doble de tiempo para los radiólogos en comparación con la MD. Sin embargo, con la IA, es posible pasar del uso de mamografías digitales a la tomosíntesis digital de mama”, dijo el autor principal, el radiólogo, José Luis Raya-Povedano, MD, de la Unidad de Cáncer de Mama en el IMIBIC. “El flujo de trabajo de los programas de detección del cáncer de mama se podría mejorar, dada la gran carga de trabajo y la gran cantidad de evaluaciones falsas positivas y falsas negativas”.

Transpara se basa en FusionAI, una combinación de patología, imágenes clínicas, física de rayos X y técnicas de aprendizaje profundo (DL), diseñadas para mejorar la exactitud de la lectura de mamografías, ayudar a interpretar áreas sospechosas, aumentar la confianza en casos normales y sospechosos y acelerar la lectura de mamografías en 2D y 3D.


Enlace relacionado:
Instituto Maimónides de Investigación Biomédica
ScreenPoint Medical

New
Mammography System (Analog)
MAM VENUS
Portable Color Doppler Ultrasound Scanner
DCU10
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
X-ray Diagnostic System
FDX Visionary-A

Canales

RM

ver canal
Imagen: los investigadores utilizaron RM y pantalones inspirados en la NASA para mejorar las pruebas de esfuerzo y revelar problemas cardíacos ocultos (foto cortesía de UTA)

Nueva técnica de resonancia magnética revela problemas cardíacos ocultos

Las pruebas de esfuerzo tradicionales, realizadas en una máquina de resonancia magnética (RM), requieren que los pacientes permanezcan acostados, una posición que mejora artificialmente... Más

Ultrasonido

ver canal
Imagen: el ultrasonido focalizado puede detener el crecimiento de lesiones cerebrales debilitantes (Foto cortesía de Nature Biomedical Engineering; doi.org/10.1038/s41551-025-01390-z)

Nueva técnica sin incisiones detiene el crecimiento de lesiones cerebrales debilitantes

Las malformaciones cavernosas cerebrales (MCC), también conocidas como cavernomas, son agrupaciones anómalas de vasos sanguíneos que pueden formarse en el cerebro, la médula... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.