Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Parker Laboratories

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.
30 ene 2023 - 02 feb 2023

Según un estudio, la mayoría de los radiólogos quieren adoptar herramientas de IA en la práctica clínica

Por el equipo editorial de MedImaging en español
Actualizado el 19 Aug 2022
Print article
Imagen: Los radiólogos preferirían el apoyo a la decisión basado en IA durante la interpretación de la mamografía de detección (Fotografía cortesía de Pexels)
Imagen: Los radiólogos preferirían el apoyo a la decisión basado en IA durante la interpretación de la mamografía de detección (Fotografía cortesía de Pexels)

La inteligencia artificial (IA) puede mejorar la detección del cáncer y la predicción del riesgo durante la mamografía, pero se desconocen las preferencias de los radiólogos con respecto a sus características e implementación. Ahora, un nuevo estudio sobre las preferencias de los radiólogos en relación con el uso de la IA como herramienta de apoyo para la detección del cáncer y la predicción del riesgo durante las mamografías, ha descubierto que hasta el 60 % de los radiólogos tienen la intención de adoptar herramientas de IA en la práctica clínica en un futuro próximo.

A través de entrevistas cualitativas con radiólogos, investigadores de la Universidad de Washington (Seattle, WA, EUA) y la Alianza para el Cuidado del Cáncer de Seattle (Seattle, WA, EUA), identificaron cinco atributos principales para la detección de cáncer de mama basada en IA y cuatro para la predicción del riesgo de cáncer de mama. El equipo desarrolló un experimento de elección discreta (DCE) basado en estos atributos e invitó a participar a 150 radiólogos de EUA. Cada encuestado hizo ocho elecciones para cada herramienta entre tres alternativas: dos herramientas hipotéticas basadas en IA versus detección sin IA. Los investigadores analizaron las preferencias de toda la muestra utilizando modelos logit de parámetros aleatorios e identificaron subgrupos con modelos de clases latentes. Los encuestados (N=66; tasa de respuesta del 44 %) procedían de seis entornos de práctica diversos en ocho estados.

Los investigadores encontraron que los radiólogos estaban más interesados en la IA para la detección del cáncer cuando la sensibilidad y la especificidad estaban equilibradas (94 % de sensibilidad con <25 % de los exámenes marcados) y el marcado de la IA aparecía al final del protocolo de suspensión después de que los radiólogos completaran su revisión independiente. Para la predicción del riesgo basada en la IA, los radiólogos prefirieron los modelos de IA que utilizan tanto imágenes de mamografía como datos clínicos. En general, entre el 46 y el 60 % tenía la intención de adoptar alguna de las herramientas de IA presentadas en el estudio; 26-33 % se acercaron a la IA con entusiasmo, pero se desanimaron si las características no se alineaban con sus preferencias. Con base en estos hallazgos, los investigadores concluyeron que, aunque la mayoría de los radiólogos desean utilizar el apoyo a la toma de decisiones basado en IA, la adopción a corto plazo se puede maximizar mediante la implementación de herramientas que satisfagan las preferencias de los usuarios disuadidos.

Enlaces relacionados:
Universidad de Washington  
Alianza para el Cuidado del Cáncer de Seattle

Proveedor de oro
Ultrasound Transducer/Probe Cleaner
Transeptic Cleaning Solution
New
Ultrasound System
MyLab X1
New
Dynamic Flat Panel Detector
560RF
New
Air Displacement Plethysmography System
BOD POD

Print article
Radcal
CIRS -  MIRION

Canales

Radiografía

ver canal
Imagen: Modelo de aprendizaje profundo detecta riesgo de ECV utilizando imágenes de rayos X de tórax (Fotografía cortesía del Hospital General de Massachusetts)

IA predice riesgo de enfermedades cardíacas utilizando una sola radiografía

Las guías actuales recomiendan estimar el riesgo a 10 años de eventos cardiovasculares adversos mayores para establecer quién debe recibir una estatina para la prevención primaria.... Más

RM

ver canal
Imagen: Ejemplos de imágenes de RM aislando el campo de visión para enfocarse en recopilar datos de la parte del cuerpo que se examina (Fotografía cortesía de la Facultad de Medicina de la Universidad de Colorado)

Nueva tecnología diseñada para aumentar velocidades de resonancia magnética podría conducir a exploraciones más rápidas

Las matemáticas y la ingeniería complejas están involucradas en la generación de imágenes de órganos y tejidos internos cuando los pacientes ingresan al tubo ... Más

Ultrasonido

ver canal
Imagen: Una combinación de ultrasonido y nanoburbujas permite que los tumores cancerosos sean destruidos sin cirugía (Fotografía cortesía de la Universidad de Tel Aviv)

Ultrasonido combinado con nanoburbujas permite eliminar tumores sin cirugía

El método predominante de tratamiento del cáncer es la extirpación quirúrgica del tumor, en combinación con tratamientos complementarios como la quimioterapia y la inmunoterapia.... Más

Medicina Nuclear

ver canal
Imagen: El PET/CT digital de ultra alta resolución uEXPLORER ofrece escaneo dinámico de cuerpo completo (Fotografía cortesía de UIH)

Primer PET/CT de cuerpo completo del mundo permite escanear todo el cuerpo en una posición de cama

United Imaging Healthcare (UIH, Shanghái, China) presentó el primer PET/CT de cuerpo completo del mundo, uEXPLORER, con un campo de visión (FOV) axial de PET de 194 cm que permite... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2022 Globetech Media. All rights reserved.