Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.

IA predice riesgo de recurrencia del cáncer de pulmón mediante tomografías computarizadas

Por el equipo editorial de MedImaging en español
Actualizado el 28 Dec 2022
Print article
Imagen: El estudio OCTAPUS-AI utilizó el aprendizaje automático para ver cuán exactamente podría predecir la recurrencia del cáncer de pulmón (Fotografía cortesía de Pexels)
Imagen: El estudio OCTAPUS-AI utilizó el aprendizaje automático para ver cuán exactamente podría predecir la recurrencia del cáncer de pulmón (Fotografía cortesía de Pexels)

El cáncer de pulmón de células no pequeñas (CPCNP) representa casi cinco sextos (85 %) de los casos de cáncer de pulmón y, cuando se detecta a tiempo, la enfermedad suele ser curable. Sin embargo, más de un tercio (36 %) de los pacientes con CPCNP en el Reino Unido experimentan una reaparición del cáncer, lo que se conoce como recurrencia. Según los últimos resultados de un estudio, la inteligencia artificial (IA) podría ayudar a identificar el riesgo de que el cáncer regrese en pacientes con CPCNP mediante tomografías computarizadas.

La última fase del estudio OCTAPUS-AI dirigido por investigadores de The Royal Marsden NHS Foundation Trust (Londres, Reino Unido) utilizó imágenes y datos clínicos de más de 900 pacientes con CPCNP del Reino Unido y los Países Bajos después de radioterapia curativa para desarrollar y probar algoritmos de aprendizaje automático (ML) para ver con qué precisión los modelos podrían predecir la recurrencia. Se utilizó una medida conocida como “área bajo la curva” (AUC) para expresar la efectividad de esta herramienta. Un AUC de uno significa que el sistema siempre es correcto; 0,5 es el puntaje que esperaría si fuera una suposición aleatoria y cero significa que siempre está equivocado.

Los datos de imágenes se tomaron de las tomografías computarizadas de planificación del tratamiento, que todos los pacientes con CPCNP realizan antes de la radioterapia. Para analizar estos datos, los investigadores utilizaron una técnica llamada radiómica, que puede extraer información de pronóstico sobre la enfermedad del paciente a partir de imágenes médicas que el ojo humano no puede ver. Los datos de esta técnica también pueden vincularse potencialmente con marcadores biológicos. Como resultado, los investigadores creen que la radiómica podría ser una herramienta útil tanto para personalizar la medicina como para mejorar la vigilancia posterior al tratamiento.

Los resultados del estudio revelan que el modelo de los investigadores fue mejor para identificar correctamente qué pacientes con CPCNP tenían un mayor riesgo de recurrencia dentro de los dos años posteriores a la finalización de la radioterapia, que un modelo basado en el sistema de estadificación TNM. Este modelo logró un AUC de 0,738, mejorando la técnica de estadificación TNM tradicional que obtuvo una puntuación de 0,683. TNM, que describe la cantidad y la propagación del cáncer en el cuerpo de un paciente, es actualmente el estándar de oro para predecir el pronóstico de los pacientes con cáncer.

“Si bien se encuentra en una etapa muy temprana, este trabajo sugiere que nuestro modelo podría ser mejor para predecir correctamente el nuevo crecimiento del tumor que los métodos tradicionales. Esto significa que, al usar nuestra tecnología, los médicos pueden eventualmente identificar la recurrencia antes en pacientes de alto riesgo”, dijo el líder del estudio, el Dr. Sumeet Hindocha, registrador especialista en oncología clínica en The Royal Marsden NHS Foundation Trust y miembro de investigación clínica en el Colegio Imperial de Londres. “A continuación, queremos explorar técnicas de aprendizaje automático más avanzadas, como el aprendizaje profundo, para ver si podemos obtener resultados aún mejores. Luego queremos probar este modelo en pacientes con CPCNP recién diagnosticados y seguirlos para ver si el modelo puede predecir con precisión su riesgo de recurrencia”.

Enlaces relacionados:
The Royal Marsden NHS Foundation Trust  

Proveedor de oro
SBRT Phantom with Removable Spine
E2E SBRT Phantom with Removable Spine Model 036S-CVXX-xx
New
Straight Arm X-Ray System
Jumong Digital V Structure
New
Neuro-OR MRI System
Nexaris MR
New
Breast Biopsy Device
CYTOMAT

Print article

Canales

Radiografía

ver canal
Imagen: Un estudio ha encontrado que el uso de modelos generativos para aumentar y generar datos radiológicos es factible (Fotografía cortesía de la Universidad Charité de Berlín)

Nueva herramienta de generación de imágenes por IA tiene un futuro prometedor en radiología

DALL-E 2, una herramienta de inteligencia artificial (IA) que fue presentada en abril de 2022 por OpenAI, genera nuevas imágenes fotorrealistas u obras de arte basadas en la entrada de texto.... Más

RM

ver canal
Imagen: La nueva exploración mide los niveles de oxígeno tumoral en tiempo real para ayudar a guiar el tratamiento (Fotografía cortesía de la ICR)

Tecnología de resonancia magnética mejorada con oxígeno permite a oncólogos ver dentro de los tumores

Desde la década de 1950, los investigadores han sido conscientes de la dificultad de tratar eficazmente los tumores privados de oxígeno, problema que se agrava aún más cuando... Más

Ultrasonido

ver canal
Imagen: El nuevo ultrasonido focalizado es efectivo para tratar los trastornos del movimiento de la enfermedad de Parkinson (Fotografía cortesía de Pexels)

Nuevo tratamiento de ultrasonido focalizado demuestra efectividad en pacientes con enfermedad de Parkinson

La enfermedad de Parkinson es una afección neurológica caracterizada por la pérdida de neuronas dopaminérgicas en el cerebro. Si bien los medicamentos como la levodopa pueden... Más

Medicina Nuclear

ver canal
Imagen: El seguimiento del tratamiento con radiación en tiempo real promete una terapia contra el cáncer más segura y efectiva (Fotografía cortesía de Pexels)

Imágenes en 3D en tiempo real brindan visión única de los rayos X que golpean el interior del cuerpo durante la radioterapia

La radiación se usa en el tratamiento de cientos de miles de pacientes con cáncer cada año, bombardeando un área del cuerpo con ondas y partículas de alta energía,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2023 Globetech Media. All rights reserved.