Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Aprendizaje profundo de radiómica basada en TC predice metástasis en ganglios linfáticos de tumores

Por el equipo editorial de MedImaging en español
Actualizado el 12 Feb 2024
Print article
Imagen: El modelo de IA ha demostrado una tasa de éxito del 89 % en la predicción de metástasis en los ganglios linfáticos (Fotografía cortesía de 123RF)
Imagen: El modelo de IA ha demostrado una tasa de éxito del 89 % en la predicción de metástasis en los ganglios linfáticos (Fotografía cortesía de 123RF)

Los tumores neuroendocrinos de páncreas no funcionales, aunque poco comunes, se tratan principalmente mediante intervención quirúrgica. El proceso de toma de decisiones sobre cirugía y otros tratamientos está fuertemente influenciado por la presencia o ausencia de metástasis en los ganglios linfáticos. Actualmente existe una falta de consenso en las directrices clínicas, especialmente en lo que respecta a la necesidad de cirugía en tumores menores de 2 cm. El diagnóstico preoperatorio de metástasis en los ganglios linfáticos mediante los métodos existentes no es suficientemente confiable. Para abordar esto, los investigadores han introducido un modelo de imágenes que combina la radiómica (la extracción de datos de imágenes radiológicas) y el aprendizaje profundo para predecir metástasis preoperatorias en los ganglios linfáticos en estos tumores. Este modelo innovador marca un importante paso adelante en la evaluación no invasiva de metástasis en los ganglios linfáticos, facilitando un diagnóstico más preciso y ayudando a determinar las estrategias de tratamiento más efectivas.

El equipo de la Universidad de Tsukuba (Tsukuba, Japón) desarrolló este modelo predictivo integrando características radiómicas obtenidas de tomografías computarizadas y resonancias magnéticas con técnicas avanzadas de aprendizaje profundo de inteligencia artificial. Sorprendentemente, este modelo mostró una tasa de precisión del 89 % en la predicción de metástasis en los ganglios linfáticos, que aumenta aún más al 91 % cuando se valida con datos de un hospital externo. Notablemente, su rendimiento se mantiene estable independientemente de si el tamaño del tumor es superior o inferior a 2 cm. Por tanto, este modelo sirve como una herramienta vital para predecir metástasis en los ganglios linfáticos, proporcionando a los cirujanos información esencial para seleccionar las intervenciones quirúrgicas y los planes de tratamiento más adecuados. El desarrollo tiene el potencial de mejorar significativamente los resultados de los pacientes en este desafiante campo médico.

Enlaces relacionados:
Universidad de Tsukuba

New
MRI Infusion Workstation
BeneFusion MRI Station
NMUS & MSK Ultrasound
InVisus Pro
New
Leg Wraps
Leg Wraps
Portable Color Doppler Ultrasound System
S5000

Print article

Canales

RM

ver canal
Imagen: Una exploración porRM puede revelar la edad funcional del corazón (foto cortesía de 123RF)

Nueva técnica de resonancia magnética revela la verdadera edad del corazón

Las enfermedades cardíacas siguen siendo una de las principales causas de muerte en todo el mundo. Las personas con afecciones como diabetes u obesidad suelen experimentar un envejecimiento cardíaco... Más

Ultrasonido

ver canal
Imagen: la herramienta de ultrasonido pulmonar impulsada por IA superó a los expertos humanos en un 9 % en el diagnóstico de tuberculosis (Adobe Stock)

La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis

A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.