Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Algoritmo basado en IA reduce significativamente las tasas de error en la detección de embolia pulmonar

Por el equipo editorial de MedImaging en español
Actualizado el 14 Aug 2024
Print article
Imagen: La solución basada en IA pudo detectar el 76 % de los casos de EP que inicialmente no se detectaron en los informes clínicos de CTPA (Foto cortesía de Angela Ayobi, et al.; Doi.org/10.1016/j.clinimag.2024.110245)
Imagen: La solución basada en IA pudo detectar el 76 % de los casos de EP que inicialmente no se detectaron en los informes clínicos de CTPA (Foto cortesía de Angela Ayobi, et al.; Doi.org/10.1016/j.clinimag.2024.110245)

La embolia pulmonar (EP) ocupa el tercer lugar entre los síndromes cardiovasculares agudos más comunes a nivel mundial, con una prevalencia del 20 %. Sin tratamiento, la EP puede tener una tasa de mortalidad de hasta el 35 %, pero esta puede reducirse a entre el 2 % y el 15 % con un tratamiento rápido y adecuado. La principal herramienta de diagnóstico para la EP es la angiografía pulmonar por TC (CTPA), una prueba no invasiva que es ampliamente disponible y rápida de realizar, capaz de detectar émbolos con alta sensibilidad y especificidad. Sin embargo, el diagnóstico de EP sigue siendo complejo debido a la presencia de otras afecciones que pueden parecer similares en las exploraciones, como tumores, ganglios linfáticos, artefactos y nódulos pulmonares. Los estudios han indicado que los retrasos o fallos en el diagnóstico de EP son una de las principales causas de muertes prevenibles debido a diagnósticos perdidos. Ahora, un nuevo estudio ha demostrado que un algoritmo basado en inteligencia artificial (IA) puede reducir sustancialmente las tasas de diagnósticos perdidos de EP en tomografías computarizadas.

Para el estudio, investigadores de la Universidad de California Irvine (Irvine, CA, EUA) recopilaron retrospectivamente 1204 CTPA de 230 ciudades de EUA, utilizando 57 modelos de escáner diferentes de seis fabricantes. El estándar de oro, o la verdad de referencia, fue establecido por consenso entre tres radiólogos expertos certificados por la junta estadounidense. Estos casos también fueron evaluados mediante un algoritmo de IA llamado CINA-PE, diseñado para detectar e identificar ubicaciones sospechosas de EP. La efectividad del algoritmo se midió tanto por caso como por hallazgo.

El análisis incluyó casos en los que las EP estaban presentes pero no se informaron clínicamente, y que fueron identificados por la IA. De los 196 casos confirmados, 29 (15,6 %) no se reportaron inicialmente. El algoritmo de IA identificó con éxito 22 de estos 29 casos, reduciendo así la tasa de errores del 15,6 % al 3,8 % (7 casos perdidos de 186). Estos hallazgos, publicados en la revista Clinical Imaging sugieren que la integración de la IA en entornos clínicos puede mejorar la precisión del diagnóstico de EP, lo que conduce a mejores resultados para los pacientes mediante tratamientos oportunos. La implementación de estas herramientas de IA podría reducir significativamente la incidencia de diagnósticos pasados por alto o retrasados, mejorando la prestación de atención médica en general y el cuidado de los pacientes.

Enlaces relacionados:
Universidad de California, Irvine

Computed Tomography System
Aquilion ONE / INSIGHT Edition
X-Ray Illuminator
X-Ray Viewbox Illuminators
Portable Color Doppler Ultrasound Scanner
DCU10
New
Prostate Cancer MRI Analysis Tool
DynaCAD Urology

Print article

Canales

Radiografía

ver canal
Imagen: la evaluación FFR impulsada por IA es comparable a la evaluación convencional (foto cortesía de 123RF)

Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP

La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más

RM

ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más

Ultrasonido

ver canal
Imagen: la herramienta de ultrasonido pulmonar impulsada por IA superó a los expertos humanos en un 9 % en el diagnóstico de tuberculosis (Adobe Stock)

La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis

A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... Más

Medicina Nuclear

ver canal
Imagen: COX-2 en la materia gris cortical humana (foto cortesía de The Journal of Nuclear Medicine; DOI: https://doi.org/10.2967/jnumed.124.268525)

Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación

La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.