Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Un sistema nuevo de IA da prioridad a los exámenes de rayos-X del tórax con hallazgos críticos

Por el equipo editorial de MedImaging en español
Actualizado el 11 Feb 2019
Imagen: Ejemplos de radiografías con prioridad correcta e incorrecta. (a) La radiografía fue informada mostrando un derrame pleural derecho grande (flecha). Esto fue correctamente priorizado como urgente. (b) Se notificó que la radiografía muestra “lucencia en el vértice izquierdo sospechoso de neumotórax”. Esto se priorizó como normal. En revisión por tres radiólogos independientes, la radiografía se consideró unánimemente normal. (c) Una radiografía se informó mostrando una consolidación proyectada detrás del corazón (flecha). El sistema de inteligencia artificial pasó por alto el hallazgo y el estudio se priorizó incorrectamente como normal (Fotografía cortesía de la RSNA).
Imagen: Ejemplos de radiografías con prioridad correcta e incorrecta. (a) La radiografía fue informada mostrando un derrame pleural derecho grande (flecha). Esto fue correctamente priorizado como urgente. (b) Se notificó que la radiografía muestra “lucencia en el vértice izquierdo sospechoso de neumotórax”. Esto se priorizó como normal. En revisión por tres radiólogos independientes, la radiografía se consideró unánimemente normal. (c) Una radiografía se informó mostrando una consolidación proyectada detrás del corazón (flecha). El sistema de inteligencia artificial pasó por alto el hallazgo y el estudio se priorizó incorrectamente como normal (Fotografía cortesía de la RSNA).
Un equipo de investigadores del Reino Unido ha capacitado a un sistema de inteligencia artificial (IA) para interpretar y priorizar las radiografías de tórax anormales con hallazgos críticos, creando así el potencial para reducir la acumulación de exámenes y brindar atención médica urgente a los pacientes con mayor rapidez.

A nivel mundial, las radiografías de tórax representan el 40% de todas las imágenes de diagnóstico y la cantidad de exámenes puede generar importantes atrasos en los centros de atención médica. El aprendizaje profundo (AP), un tipo de IA que puede ser capacitada para reconocer patrones sutiles en imágenes médicas, se considera un medio automático para reducir esta acumulación e identificar exámenes que merecen atención inmediata, especialmente en sistemas de atención médica financiados con fondos públicos.

En su estudio, los investigadores utilizaron 470.388 radiografías de tórax en adultos para desarrollar un sistema de IA que podría identificar hallazgos clave. Los informes radiológicos fueron preprocesados utilizando Procesamiento de Lenguaje Natural (NLP, por sus siglas en inglés), un algoritmo importante del sistema de IA que extrae etiquetas de texto escrito. Para cada radiografía, el sistema interno de los investigadores requirió una lista de etiquetas que indicaban qué anomalías específicas eran visibles en la imagen.

El NLP analizó el informe radiológico para priorizar cada imagen como crítica, urgente, no urgente o normal. Luego, se entrenó un sistema de inteligencia artificial para visión computacional utilizando imágenes de rayos X etiquetadas para predecir la prioridad clínica solo a partir de las apariencias. Los investigadores probaron el desempeño del sistema para la priorización en una simulación utilizando un conjunto independiente de 15.887 imágenes. El sistema de IA distingue las radiografías de tórax normales con alta exactitud. Las simulaciones mostraron que los hallazgos críticos recibieron la opinión de un radiólogo experto en 2,7 días, en promedio, con el enfoque de IA, significativamente más rápido que el promedio de 11,2 días para la práctica real.

“Los resultados iniciales reportados aquí son emocionantes, ya que demuestran que un sistema de inteligencia artificial puede ser entrenado exitosamente usando una gran base de datos radiológicos adquiridos de forma rutinaria”, dijo el coautor del estudio, Giovanni Montana, PhD., anteriormente del King's College de Londres en Londres y actualmente en la Universidad de Warwick en Coventry, Inglaterra. “Con una mayor validación clínica, se espera que esta tecnología reduzca la carga de trabajo de un radiólogo de manera significativa al detectar todos los exámenes normales, de modo que se pueda dedicar más tiempo a aquellos que requieren más atención”.

Enlace relacionado:
Portable X-ray Unit
AJEX140H
Portable Color Doppler Ultrasound Scanner
DCU10
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
Miembro Plata
X-Ray QA Meter
T3 AD Pro

Canales

RM

ver canal
Imagen: los investigadores utilizaron RM y pantalones inspirados en la NASA para mejorar las pruebas de esfuerzo y revelar problemas cardíacos ocultos (foto cortesía de UTA)

Nueva técnica de resonancia magnética revela problemas cardíacos ocultos

Las pruebas de esfuerzo tradicionales, realizadas en una máquina de resonancia magnética (RM), requieren que los pacientes permanezcan acostados, una posición que mejora artificialmente... Más

Ultrasonido

ver canal
Imagen: el ultrasonido focalizado puede detener el crecimiento de lesiones cerebrales debilitantes (Foto cortesía de Nature Biomedical Engineering; doi.org/10.1038/s41551-025-01390-z)

Nueva técnica sin incisiones detiene el crecimiento de lesiones cerebrales debilitantes

Las malformaciones cavernosas cerebrales (MCC), también conocidas como cavernomas, son agrupaciones anómalas de vasos sanguíneos que pueden formarse en el cerebro, la médula... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

Imaginología General

ver canal
Imagen: El cinturón de TC por ultrasonido podría facilitar el seguimiento de pacientes con afecciones cardíacas y pulmonares (foto cortesía de la Universidad de Bath)

Dispositivo portátil pionero ofrece una alternativa revolucionaria a las tomografías computarizadas

Actualmente, los pacientes con afecciones como insuficiencia cardíaca, neumonía o dificultad respiratoria suelen requerir múltiples procedimientos de diagnóstico por imagen... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.