Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Un método de aprendizaje automático puede evitarles a las mujeres cirugías innecesarias de mama

Por el equipo editorial de MedImaging en español
Actualizado el 25 Mar 2019
Un equipo de investigadores de la Facultad de Medicina Geisel en Dartmouth (Hanover, NH, EUA) desarrolló un método de aprendizaje automático para predecir la conversión de la hiperplasia ductal atípica (HDA) a cáncer.

La HDA, una lesión mamaria asociada con un aumento de cuatro a cinco veces en el riesgo de cáncer de mama, se encuentra principalmente mediante mamografía y se identifica en la biopsia con aguja gruesa. A pesar de los múltiples pases de la lesión durante la biopsia, solo se muestrean algunas porciones de las lesiones. Otros factores variables influyen en el muestreo y la exactitud, de modo que la presencia de cáncer puede subestimarse en un 10-45%. Actualmente, se recomienda la extirpación quirúrgica para todos los casos de HDA encontrados en las biopsias con aguja gruesa con el fin de determinar si la lesión es cancerosa. Alrededor del 20-30% de los casos de HDA se convierten en cáncer después de la escisión quirúrgica. Sin embargo, esto significa que 70-80% de las mujeres se realizan un procedimiento quirúrgico invasivo y costoso para una lesión benigna (pero de alto riesgo).

El nuevo método de aprendizaje automático para predecir la conversión de HDA a cáncer puede ayudar a los clínicos y pacientes de bajo riesgo a decidir si la vigilancia activa y la terapia hormonal son una alternativa razonable a la escisión quirúrgica. Una evaluación del modelo, realizada por los investigadores, mostró que el método de aprendizaje automático puede identificar el 98% de todos los casos malignos antes de la cirugía, evitando que el 16% de las mujeres se hubieran hecho una operación innecesaria para una lesión benigna. Los investigadores ahora planean expandir el alcance de su modelo al incluir otras lesiones mamarias de alto riesgo, como neoplasia lobular, papilomas y cicatrices radiales. También planean seguir validando su método en grandes conjuntos de datos externos utilizando registros estatales y nacionales de cáncer de mama, y colaborando con otros centros médicos.

“Nuestros resultados sugieren que existen sólidas diferencias clínicas entre las mujeres con un riesgo bajo en comparación con un alto riesgo de que la HDA se convierta en cáncer según los datos de la biopsia con aguja gruesa que le permitieron a nuestro modelo de aprendizaje automático predecir de manera confiable las actualizaciones de malignidad en nuestro conjunto de datos”, dijo Saeed Hassanpour, PhD, quien lideró el equipo de investigación de Dartmouth. “Este estudio también identificó importantes variables clínicas involucradas en el riesgo de actualización de HDA”.

“Nuestro modelo puede ayudar potencialmente a las pacientes y médicos a elegir un método de manejo alternativo en casos de bajo riesgo”, agregó Hassanpour. “En la era de la medicina personalizada, estos modelos pueden ser deseables para los pacientes que valoran un enfoque compartido de toma de decisiones con la capacidad de elegir entre la escisión quirúrgica para tener certeza, versus la vigilancia para evitar el costo, el estrés y los posibles efectos secundarios en mujeres con bajo riesgo para que la HDA se convierta en cáncer”.

Enlace relacionado:
Facultad de Medicina Geisel en Dartmouth

Portable X-ray Unit
AJEX140H
Post-Processing Imaging System
DynaCAD Prostate
New
Floor‑Mounted Digital X‑Ray System
MasteRad MX30+
Pocket Fetal Doppler
CONTEC10C/CL

Canales

RM

ver canal
Imagen: una resonancia magnética cardíaca con contraste de un paciente con miocardiopatía hipertrófica considerado por MAARS con alto riesgo de muerte súbita (foto cortesía de la Universidad Johns Hopkins)

Modelo de IA supera a los médicos en la identificación de pacientes con mayor riesgo de paro cardíaco

La miocardiopatía hipertrófica es una de las cardiopatías hereditarias más comunes y una de las principales causas de muerte súbita cardíaca en jóvenes y deportistas.... Más

Ultrasonido

ver canal
Imagen: MoGLo-Net rastrea el movimiento del transductor de ultrasonido utilizando datos de motas de tejido sin necesidad de sensores externos (foto cortesía de la Universidad Nacional de Pusan)

Avance en modelo de aprendizaje profundo mejora las imágenes médicas 3D con dispositivos portátiles

La ecografía es una técnica diagnóstica vital que permite visualizar órganos y tejidos internos en tiempo real, además de guiar procedimientos como biopsias e inyecciones.... Más

Medicina Nuclear

ver canal
Imagen: la herramienta de diagnóstico podría mejorar las decisiones de diagnóstico y tratamiento para pacientes con infecciones pulmonares crónicas (foto cortesía de SNMMI)

Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar

Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más

Imaginología General

ver canal
Imágenes de resultado positivo en examen de detección de colonografía por TC en un hombre asintomático de 67 años (foto cortesía de Radiology)

La colonografía por TC supera a la prueba de ADN en heces para la detección del cáncer de colon

Dado que el cáncer colorrectal sigue siendo la segunda causa principal de muertes relacionadas con el cáncer a nivel mundial, la detección temprana mediante pruebas de cribado es fundamental... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.