Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




La inteligencia artificial reduce el tiempo de interpretación de las resonancias magnéticas de la columna lumbar

Por el equipo editorial de MedImaging en español
Actualizado el 09 Aug 2024
Print article
Imagen: La IA reduce significativamente los tiempos de interpretación de la resonancia magnética de la columna lumbar (foto cortesía de 123RF)
Imagen: La IA reduce significativamente los tiempos de interpretación de la resonancia magnética de la columna lumbar (foto cortesía de 123RF)

La resonancia magnética (RM) de la columna lumbar se utiliza con frecuencia para evaluar el dolor lumbar, lo que permite detectar condiciones como la protrusión discal, la compresión de las raíces nerviosas y la degeneración discal. Estos hallazgos son cruciales para determinar qué pacientes podrían necesitar intervención quirúrgica. Sin embargo, la evaluación de la estenosis de la columna lumbar mediante RM requiere una clasificación en múltiples niveles, lo cual es repetitivo y requiere mucho tiempo. Además, la falta de sistemas de clasificación estandarizados para definir la estenosis espinal lumbar da como resultado interpretaciones inconsistentes. En respuesta, se han desarrollado modelos de aprendizaje profundo (DL) que utilizan redes neuronales convolucionales para ayudar en el análisis de la RM. Los avances recientes en el aprendizaje automático, impulsados por inteligencia artificial (IA), tienen el potencial de acelerar la interpretación de las exploraciones e identificar con precisión afecciones como la degeneración y otros problemas relacionados con los discos, mejorando así la eficiencia, precisión, confiabilidad y rentabilidad de los informes radiológicos.

Un nuevo estudio realizado en el Hospital General de Sengkang (Singapur) evaluó la eficacia deuna herramienta de asistencia en la lectura basada en IA para reducir el tiempo requerido para interpretar exámenes de RM de la columna lumbar y su precisión en el diagnóstico en comparación con radiólogos experimentados. El estudio incluyó un conjunto de datos de prueba de estudios de RM de la columna lumbar de 51 pacientes, 25 hombres y 26 mujeres, realizados del 1 al 10 de diciembre de 2022. Se analizaron tanto las imágenes axiales ponderadas en T1 y T2 desde L1-2 hasta L5-S1, como las imágenes sagitales ponderadas en T1 y T2.

Los hallazgos del estudio publicado,s en el European Journal of Radiology, revelan que el tiempo promedio de interpretación por estudio de RM fue significativamente más corto con la ayuda de la IA que sin ella. El rango intercuartil (RIC) del tiempo de interpretación con IA fue de 5,29 minutos, frente a 56,46 minutos sin IA. Los hallazgos indican que el uso de un modelo de aprendizaje profundo para analizar exploraciones por RM de estenosis espinal lumbar ahorra sustancialmente tiempo y mejora el acuerdo interobservador entre los residentes en formación de radiología. A medida que la IA se integra más en la práctica clínica, está preparada para aumentar la eficiencia clínica, se espera que aumente la eficiencia clínica, ayude a priorizar las tareas de radiología de manera más efectiva y disminuya el tiempo que los radiólogos necesitan para interpretar los resultados.

Enlaces relacionados:
Hospital General de Sengkang

Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
New
Post-Processing Imaging System
DynaCAD Prostate
Miembro Plata
X-Ray QA Meter
T3 AD Pro
New
Breast Localization System
MAMMOREP LOOP

Print article

Canales

Ultrasonido

ver canal
Imagen: el ultrasonido focalizado puede detener el crecimiento de lesiones cerebrales debilitantes (Foto cortesía de Nature Biomedical Engineering; doi.org/10.1038/s41551-025-01390-z)

Nueva técnica sin incisiones detiene el crecimiento de lesiones cerebrales debilitantes

Las malformaciones cavernosas cerebrales (MCC), también conocidas como cavernomas, son agrupaciones anómalas de vasos sanguíneos que pueden formarse en el cerebro, la médula... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

Imaginología General

ver canal
Imagen: El cinturón de TC por ultrasonido podría facilitar el seguimiento de pacientes con afecciones cardíacas y pulmonares (foto cortesía de la Universidad de Bath)

Dispositivo portátil pionero ofrece una alternativa revolucionaria a las tomografías computarizadas

Actualmente, los pacientes con afecciones como insuficiencia cardíaca, neumonía o dificultad respiratoria suelen requerir múltiples procedimientos de diagnóstico por imagen... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.