Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Aprendizaje profundo mejora la precisión en evaluaciones de calidad de la elastografía por resonancia magnética

Por el equipo editorial de MedImaging en español
Actualizado el 06 Sep 2024
Imagen: El estudio demostró un enfoque automatizado basado en DL para clasificar la calidad de diagnóstico de la ERM 2D de hígado (Foto cortesía de Georgia Tech)
Imagen: El estudio demostró un enfoque automatizado basado en DL para clasificar la calidad de diagnóstico de la ERM 2D de hígado (Foto cortesía de Georgia Tech)

La enfermedad hepática afecta a millones de personas en todo el mundo, con muchas más en etapas no detectadas de enfermedad del hígado graso. Si no se diagnostican ni se tratan, estas afecciones pueden progresar a cirrosis, que implica cicatrices hepáticas irreversibles. Por lo general, se realiza una biopsia después de un resultado anormal en un análisis de sangre para diagnosticar y controlar el tejido hepático, pero este procedimiento conlleva riesgos y consume tiempo. Para evitar estos problemas, se han desarrollado técnicas no invasivas como la elastografía por resonancia magnética (ERM). La ERM, que combina tecnología de ultrasonido y resonancia magnética, visualiza los niveles de rigidez del hígado para indicar la cicatrización y se ha convertido en un método preferido para diagnosticar problemas hepáticos. No obstante, las exploraciones de ERM pueden fallar debido a varios factores, como el movimiento del paciente, rasgos fisiológicos específicos o problemas técnicos como la generación incorrecta de ondas. La creciente demanda de servicios de diagnóstico combinada con la escasez de personal subraya la necesidad de un método confiable y automatizado para clasificar la calidad de las imágenes de ERM para mejorar la eficiencia y minimizar los procedimientos repetidos.

Ahora, investigadores de la Escuela de Ingeniería Mecánica George W. Woodruff (Atlanta, Georgia, EUA) han utilizado con éxito el aprendizaje profundo para mejorar significativamente la precisión de las evaluaciones de calidad de imágenes de MRE. Al utilizar cinco modelos de entrenamiento de aprendizaje profundo, lograron una precisión del 92 % en imágenes retrospectivas de pacientes, que variaban en cuanto a la rigidez del hígado. Esta tecnología también logró un retorno de los datos analizados en cuestión de segundos, lo que permitió a los técnicos realizar los ajustes necesarios en el momento para evitar la necesidad de visitas adicionales del paciente debido a exploraciones iniciales de baja calidad.

Los hallazgos, detallados en el Journal of Magnetic Resonance Imaging, hacen avanzar aún más los esfuerzos para automatizar las revisiones de calidad de las imágenes por resonancia magnética mediante el aprendizaje profundo, un área relativamente inexplorada en la tecnología de imágenes médicas. Esta investigación no solo establece un punto de referencia para futuros estudios en otros órganos como el bazo o los riñones, sino que también puede extenderse a la automatización del control de calidad de la imagen en enfermedades como el cáncer de mama o la distrofia muscular, donde la rigidez del tejido es un marcador crítico de la salud y la progresión de la enfermedad. El equipo planea probar más sus modelos en los escáneres de resonancia magnética de Siemens Healthineers en el próximo año, lo que podría transformar los procesos de diagnóstico en varios campos médicos.

Enlaces relacionados:
Escuela de Ingeniería Mecánica George W. Woodruff

Miembro Plata
X-Ray QA Device
Accu-Gold+ Touch Pro
Half Apron
Demi
X-Ray Illuminator
X-Ray Viewbox Illuminators
Portable X-ray Unit
AJEX140H

Canales

Radiografía

ver canal
Imagen: la prueba de detección \"dos por uno\" podría ayudar a detectar las principales causas de muerte de mujeres en todo el mundo (foto cortesía de Shutterstock)

Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... Más

Ultrasonido

ver canal
Imagen: el parche de ultrasonido realiza simultáneamente imágenes de ultrasonido y medición de la presión arterial de ambas arterias carótidas (Fotografía cortesía de KIST)

Parche de ultrasonido desechable supera el rendimiento de los dispositivos existentes

Los dispositivos portátiles de ultrasonido se utilizan ampliamente en el diagnóstico, el monitoreo de la rehabilitación y la telemedicina. Sin embargo, la mayoría de los modelos... Más

Medicina Nuclear

ver canal
Imagen: los cristales de perovskita se cultivan en condiciones cuidadosamente controladas a partir de la masa fundida (foto cortesía de Mercouri Kanatzidis/Northwestern University)

Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico

Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más

Imaginología General

ver canal
Imagen: Concepto de los SCNP fotosensibles (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste

Las tecnologías de imagen médica enfrentan desafíos constantes para capturar vistas precisas y detalladas de los procesos internos, especialmente en enfermedades como el cáncer,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.