Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.

Análisis radiográfico con IA se asemeja al diagnóstico del cirujano ortopédico

Por el equipo editorial de MedImaging en español
Actualizado el 02 Aug 2017
Print article
Imagen: Ejemplos de imágenes de conjuntos de datos que se presentan a las redes para su clasificación (Fotografía cortesía de Max Gordon/Hospital Danderyd).
Imagen: Ejemplos de imágenes de conjuntos de datos que se presentan a las redes para su clasificación (Fotografía cortesía de Max Gordon/Hospital Danderyd).
Un nuevo estudio sugiere que los algoritmos de aprendizaje profundo con inteligencia artificial (AI) están a la par con los seres humanos para diagnosticar las fracturas observadas en las radiografías ortopédicas.

Los investigadores del Instituto Karolinska (KI, Solna, Suecia), el Instituto Real de Tecnología (KTH, Estocolmo, Suecia) y el Hospital Danderyd (Suecia), recuperaron 256.000 radiografías de la muñeca, la mano y el tobillo, que estaban almacenadas en el Hospital Danderyd, clasificándolas por cuatro variables: fractura, lateralidad, parte del cuerpo y vista del examen. Luego se examinaron cinco redes de aprendizaje profundo, comparando la red más exacta con un patrón para las fracturas.

Las redes de aprendizaje profundo fueron entrenadas para identificar las fracturas en dos tercios de las radiografías bajo la guía de los investigadores, y luego analizaron de forma independiente las imágenes restantes, que eran completamente nuevas para el programa de IA. El análisis se comparó con el de dos cirujanos ortopédicos experimentados que revisaron las imágenes con la misma resolución que la red. Los resultados mostraron que todas las redes exhibieron una exactitud de al menos el 90% para identificar la lateralidad, la parte del cuerpo y la vista del examen.

La exactitud final de las fracturas se calculó en un 83% para la red con mejor desempeño, lo que equivale a la de los cirujanos ortopédicos experimentados cuando se les presentaron imágenes con la misma resolución que la de la red. Según los investigadores, la IA tiene el potencial de hacerlo aún mejor si tiene acceso a mayores cantidades de datos, y por lo tanto han comenzado un estudio de seguimiento que incluirá todo el archivo ortopédico del Hospital Danderyd, de más de un millón de radiografías de alta resolución. El estudio se publicó el 6 de julio de 2017 en la revista Acta Orthopaedica.

“Nuestro estudio muestra que las redes de IA pueden hacer evaluaciones a la par con los especialistas humanos, y esperamos poder lograr resultados aún mejores con imágenes de rayos X de alta resolución”, dijo el autor principal, Max Gordon, MD, asistente consultor en ortopedia en el Hospital Danderyd. “Si podemos volver a nuestros archivos digitales, también podremos hacer extensas investigaciones sobre la supervivencia, el desarrollo de la enfermedad y la capacidad de trabajo - estudios que han sido imposibles de hacer, debido a la cantidad de datos a procesar”.

El aprendizaje profundo es parte de una familia más amplia de métodos de aprendizaje automático que se basa en las representaciones de los datos de aprendizaje, en oposición a los algoritmos específicos de tareas. Se trata de algoritmos de redes neuronales artificiales (ANN) que utilizan una cascada de muchas capas de unidades de procesamiento, no lineales, para la extracción y transformación de características, con cada capa sucesiva utilizando la salida de la capa anterior, como entrada, para formar una representación jerárquica.

Enlace relacionado:
Instituto Karolinska
el Instituto Real de Tecnología
Hospital Danderyd

Print article
Radcal
CIRS

Canales

RM

ver canal
Imagen: Cápsula articular normal en el receso axilar (A); Rotura de grosor completo del tendón supraespinoso (B) (Fotografía cortesía del AJR)

La resonancia magnética predice la rigidez del hombro en los desgarros del manguito rotador

Según un estudio nuevo, el edema y el grosor de la cápsula articular en el receso axilar, medidos con imágenes de resonancia magnética (RM), pueden ser útiles para predecir el hombro rígido en pacientes... Más

Imaginología General

ver canal
Imagen: Mapas de calor de las regiones de activación de COVID-19 (Fotografía cortesía del Hospital del Pueblo Wuhan Huangpi)

Análisis mediante IA de las TC del tórax permite diferenciar la COVID-19 de la neumonía

Según un estudio nuevo, un modelo de aprendizaje profundo de inteligencia artificial (IA) puede detectar con exactitud la COVID-19 y diferenciarla de la neumonía adquirida en la comunidad (NAC) y otras... Más

TI en Imaginología

ver canal
Imagen: El software empresarial uPath proporciona mejores herramientas de patología digital (Fotografía cortesía de Roche).

Un software de patología digital mejora la eficiencia del flujo de trabajo

Una plataforma de software novedosa reduce drásticamente los tiempos de generación de imágenes, integra el análisis automatizado de imágenes y permite un mejor intercambio de casos entre patólogos.... Más

Industria

ver canal
Imagen: AI-Rad Companion Chest CT genera automáticamente informes estandarizados, reproducibles y cuantitativos en formato DICOM SC (Fotografía cortesía de Siemens Healthineers).

Software para la TC de tórax basada en IA de Siemens Healthineers recibe aprobación de la FDA de los EUA

La Administración de Medicamentos y Alimentos de los Estados Unidos (FDA) aprobó tres módulos de AI-Rad Companion Chest CT, un asistente de software inteligente de Siemens Healthineers (Erlangen, Alemania)... Más
Copyright © 2000-2020 Globetech Media. All rights reserved.