Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Las fuentes de luz de sincrotrón podrían generar haces de rayos X

Por el equipo editorial de MedImaging en español
Actualizado el 24 Sep 2018
Print article
Imagen: El centro de radiación de un sincrotrón de Hiroshima (Fotografía cortesía de la Universidad de Hiroshima).
Imagen: El centro de radiación de un sincrotrón de Hiroshima (Fotografía cortesía de la Universidad de Hiroshima).
Un estudio nuevo demuestra cómo la superposición de dos haces de vórtices ópticos puede producir luz estructurada en forma de un rayo vectorial.

Investigadores de la Universidad de Hiroshima (Japón), los Institutos Nacionales Japoneses de Ciencias Naturales (Sokendai; Okazaki, Japón) y otras instituciones, han desarrollado una nueva técnica para generar luz estructurada con el fin de usar en áreas de investigación que solo han sido accesibles hasta ahora con radiación de sincrotrón, como la espectroscopia de absorción de rayos X y la cristalografía de rayos X. El método se basa en la producción de luz polarizada circularmente desde dos fuentes de luz polarizadas linealmente, cuyas direcciones de polarización son ortogonales entre sí.

El método actual implica dos haces de vórtice generados al superponer la radiación armónica en dos onduladores helicoidales posicionados en tándem. Como ambos haces ópticos de vórtice contienen un punto de intensidad cero, forman una luz estructurada en fase espiral, que se puede utilizar en una gran cantidad de dispositivos médicos y de otro tipo, como escáneres tridimensionales (3D), fotografía y microscopios. En el futuro, según los investigadores, el método se podría aplicar a los espectros de longitud de onda de rayos X, tales como la difracción de rayos X, la dispersión y la espectroscopía de absorción/emisión. El estudio fue publicado el 1 de julio de 2018 en la revista Applied Physics Letters.

"Hemos demostrado la generación del rayo vectorial usando radiación de sincrotrón. El próximo paso de esta investigación es demostrar la generación de haces de vectores de otros tipos, por ejemplo, haces radialmente polarizados", dijo el autor principal, el profesor Masahiro Katoh, PhD, del Instituto Sokendai de Ciencia Molecular. "Nuestro objetivo final es controlar todas las propiedades ópticas de la radiación de sincrotrón, como la longitud de onda, la coherencia, las estructuras espaciales y temporales, etc. Este trabajo ha abierto una forma de generar rayos vectoriales de rayos X".

La radiación de sincrotrón es una radiación electromagnética emitida cuando las partículas cargadas están sujetas a una aceleración perpendicular a su velocidad. Esto se puede lograr utilizando imanes de flexión, onduladores y/o contorneadores. Si la partícula es no relativista, la emisión se denomina emisión de ciclotrón. Si, por otro lado, las partículas son relativistas, la emisión se llama emisión de sincrotrón. La radiación de sincrotrón producida de esta manera tiene una polarización característica, y las frecuencias generadas pueden variar en todo el espectro electromagnético.

Enlace relacionado:
Universidad de Hiroshima
Institutos Nacionales Japoneses de Ciencias Naturales


Miembro Oro
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Ultrasound Doppler System
Doppler BT-200
Miembro Plata
Mobile X-Ray Barrier
Lead Acrylic Mobile X-Ray Barriers
Ultrasound Software
UltraExtend NX

Print article
Radcal

Canales

RM

ver canal
Imagen: Resonancia magnética 4D Flow permite una evaluación in vivo sin obstáculos de la velocidad de la sangre 3D resuelta en el tiempo (Fotografía cortesía de la Universidad Northwestern)

Resonancia magnética 4D podría mejorar evaluación clínica de anomalías del flujo sanguíneo del corazón

La resonancia magnética (RMN) utiliza imanes y radiofrecuencia pulsada para generar imágenes por computadora para detectar y diagnosticar afecciones médicas. La resonancia magnética... Más

Medicina Nuclear

ver canal
Imagen: PET/CT de un paciente masculino de 60 años con sospecha clínica de cáncer de pulmón (Fotografía cortesía de  EJNMMI Physics)

Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar

Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más

Imaginología General

ver canal
Imagen: Las imágenes PET podrían permitir el examen de tumores con más detalle mientras aún están creciendo (Fotografía cortesía de la Universidad de Glasgow)

Tecnología de imágenes proporciona nuevo enfoque innovador para diagnosticar y tratar cáncer de intestino

Las biopsias, el método actual para diagnosticar el cáncer de intestino, son invasivas y conllevan riesgos como una posible infección. Si bien la medicina de precisión tiene... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.