Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Parker Laboratories

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.

Aprendizaje automático supera a expertos clínicos en clasificación de fracturas de cadera a partir de rayos X

Por el equipo editorial de MedImaging en español
Actualizado el 15 Feb 2022
Print article
Imagen: Redes neuronales entrenadas para reconocer las articulaciones de la cadera y clasificar las fracturas (Fotografía cortesía de la Universidad de Bath)
Imagen: Redes neuronales entrenadas para reconocer las articulaciones de la cadera y clasificar las fracturas (Fotografía cortesía de la Universidad de Bath)

Dos redes neuronales convolucionales (CNN) desarrolladas en la Universidad de Bath (Somerset, Reino Unido) pudieron identificar y clasificar fracturas de cadera a partir de rayos X con un grado de precisión y confianza un 19 % mayor que el de los médicos hospitalarios. El equipo de investigación se dedicó a crear el nuevo proceso para ayudar a los médicos a hacer que la atención de la fractura de cadera sea más eficiente y respaldar mejores resultados para los pacientes. Utilizaron un total de 3.659 radiografías de cadera, clasificadas por al menos dos expertos, para entrenar y probar las redes neuronales, que lograron una precisión general del 92 % y un 19 % más de precisión que los médicos hospitalarios.

Las fracturas de cadera son una de las principales causas de morbilidad y mortalidad en las personas mayores, lo que genera altos costos para la atención médica y social. Clasificar una fractura antes de la cirugía es crucial para ayudar a los cirujanos a seleccionar las intervenciones adecuadas para tratar la fractura y restaurar la movilidad y mejorar los resultados del paciente. La capacidad de clasificar una fractura de manera rápida, precisa y confiable es clave: los retrasos en la cirugía de más de 48 horas pueden aumentar el riesgo de resultados adversos y mortalidad. Las fracturas se dividen en tres clases: intracapsulares, trocantéricas o subtrocantéricas, según la parte de la articulación en la que se produzcan. Algunos tratamientos, que están determinados por la clasificación de la fractura, pueden costar hasta 4,5 veces más que otros.

Igual de importantes son los resultados de los pacientes a largo plazo: las personas que sufren una fractura de cadera tienen al año siguiente el doble de mortalidad específica por edad que la población general. Por lo tanto, dice el equipo, el desarrollo de estrategias para mejorar el manejo de la fractura de cadera y su impacto en la morbilidad, la mortalidad y los costos de atención médica es una alta prioridad. Un problema crítico que afecta el uso de imágenes de diagnóstico es el desajuste entre la demanda y el recurso. La creciente demanda de los departamentos de radiología a menudo significa que no pueden informar los resultados de manera oportuna.

"Los métodos de aprendizaje automático y las redes neuronales ofrecen un enfoque nuevo y poderoso para automatizar el diagnóstico y la predicción de resultados, por lo que esta nueva técnica que hemos compartido tiene un gran potencial", dijo el profesor Richie Gill, autor principal del artículo y codirector del Centro para la Innovación Terapéutica, dice. "A pesar de que la clasificación de las fracturas determina con tanta fuerza el tratamiento quirúrgico y, por lo tanto, los resultados de los pacientes, actualmente no existe un proceso estandarizado sobre quién determina esta clasificación en el Reino Unido, ya sea que lo hagan cirujanos ortopédicos o radiólogos especializados en trastornos musculoesqueléticos".

Related Links:
Universidad de Bath 


Print article
Radcal
CIRS -  MIRION

Canales

RM

ver canal
Imagen: Un solo escaneo cerebral puede diagnosticar la enfermedad de Alzheimer (Fotografía cortesía de Colegio Imperial)

Sistema de aprendizaje automático basado en resonancia magnética diagnostica la enfermedad de Alzheimer con un solo escáner cerebral

La enfermedad de Alzheimer es la forma más común de demencia, y aunque la mayoría de las personas con Alzheimer la desarrollan después de los 65 años, las personas menores... Más

Ultrasonido

ver canal
Imagen: La IA se puede usar para identificar nódulos tiroideos benignos y reducir biopsias innecesarias (Fotografía cortesía de Pexels)

IA identifica nódulos tiroideos no cancerosos en imágenes de ultrasonido y reduce las biopsias

Los nódulos tiroideos son muy comunes. La biopsia por aspiración con aguja fina se utiliza para diagnosticar el cáncer de tiroides. Sin embargo, la mayoría de las biopsias producen... Más

TI en Imaginología

ver canal
Imagen: Cómo funciona el manejo de imágenes médicas de Nucleus.io (Fotografía cortesía de NucleusHealth)

Plataforma para el manejo de imágenes agiliza los planes de tratamiento

Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... Más

Industria

ver canal
Imagen: La reunión anual de la RSNA es la conferencia de imágenes médicas más grandes del mundo (Fotografía cortesía de la RSNA)

La RSNA 2022 ve un aumento en las presentaciones de resúmenes antes de la reunión anual

La Sociedad Radiológica de América del Norte (RSNA, Oak Brook, IL, EUA) ha anunciado que se han presentado casi 10.400 resúmenes científicos y educativos para la 108.... Más
Copyright © 2000-2022 Globetech Media. All rights reserved.