Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Aprendizaje automático supera a expertos clínicos en clasificación de fracturas de cadera a partir de rayos X

Por el equipo editorial de MedImaging en español
Actualizado el 15 Feb 2022
Imagen: Redes neuronales entrenadas para reconocer las articulaciones de la cadera y clasificar las fracturas (Fotografía cortesía de la Universidad de Bath)
Imagen: Redes neuronales entrenadas para reconocer las articulaciones de la cadera y clasificar las fracturas (Fotografía cortesía de la Universidad de Bath)

Dos redes neuronales convolucionales (CNN) desarrolladas en la Universidad de Bath (Somerset, Reino Unido) pudieron identificar y clasificar fracturas de cadera a partir de rayos X con un grado de precisión y confianza un 19 % mayor que el de los médicos hospitalarios. El equipo de investigación se dedicó a crear el nuevo proceso para ayudar a los médicos a hacer que la atención de la fractura de cadera sea más eficiente y respaldar mejores resultados para los pacientes. Utilizaron un total de 3.659 radiografías de cadera, clasificadas por al menos dos expertos, para entrenar y probar las redes neuronales, que lograron una precisión general del 92 % y un 19 % más de precisión que los médicos hospitalarios.

Las fracturas de cadera son una de las principales causas de morbilidad y mortalidad en las personas mayores, lo que genera altos costos para la atención médica y social. Clasificar una fractura antes de la cirugía es crucial para ayudar a los cirujanos a seleccionar las intervenciones adecuadas para tratar la fractura y restaurar la movilidad y mejorar los resultados del paciente. La capacidad de clasificar una fractura de manera rápida, precisa y confiable es clave: los retrasos en la cirugía de más de 48 horas pueden aumentar el riesgo de resultados adversos y mortalidad. Las fracturas se dividen en tres clases: intracapsulares, trocantéricas o subtrocantéricas, según la parte de la articulación en la que se produzcan. Algunos tratamientos, que están determinados por la clasificación de la fractura, pueden costar hasta 4,5 veces más que otros.

Igual de importantes son los resultados de los pacientes a largo plazo: las personas que sufren una fractura de cadera tienen al año siguiente el doble de mortalidad específica por edad que la población general. Por lo tanto, dice el equipo, el desarrollo de estrategias para mejorar el manejo de la fractura de cadera y su impacto en la morbilidad, la mortalidad y los costos de atención médica es una alta prioridad. Un problema crítico que afecta el uso de imágenes de diagnóstico es el desajuste entre la demanda y el recurso. La creciente demanda de los departamentos de radiología a menudo significa que no pueden informar los resultados de manera oportuna.

"Los métodos de aprendizaje automático y las redes neuronales ofrecen un enfoque nuevo y poderoso para automatizar el diagnóstico y la predicción de resultados, por lo que esta nueva técnica que hemos compartido tiene un gran potencial", dijo el profesor Richie Gill, autor principal del artículo y codirector del Centro para la Innovación Terapéutica, dice. "A pesar de que la clasificación de las fracturas determina con tanta fuerza el tratamiento quirúrgico y, por lo tanto, los resultados de los pacientes, actualmente no existe un proceso estandarizado sobre quién determina esta clasificación en el Reino Unido, ya sea que lo hagan cirujanos ortopédicos o radiólogos especializados en trastornos musculoesqueléticos".

Related Links:
Universidad de Bath 

X-ray Diagnostic System
FDX Visionary-A
Computed Tomography System
Aquilion ONE / INSIGHT Edition
New
Adjustable Mobile Barrier
M-458
Digital X-Ray Detector Panel
Acuity G4

Canales

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: la herramienta de diagnóstico podría mejorar las decisiones de diagnóstico y tratamiento para pacientes con infecciones pulmonares crónicas (foto cortesía de SNMMI)

Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar

Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más

Imaginología General

ver canal
Imagen: un modelo de aprendizaje profundo basado en parches con un conjunto de datos de entrenamiento limitado para la segmentación de tumores hepáticos en TC con contraste (Yang et al. (2025), IEEE Access, 10.1109/Access.2025.3570728)

Modelo de IA segmenta con precisión tumores hepáticos a partir de tomografías computarizadas

El cáncer de hígado es el sexto tipo de cáncer más común en el mundo y una de las principales causas de muerte por cáncer. La segmentación precisa de los tumores hepáticos es crucial para el diagnóstico... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.