Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Primer modelo de IA de aprendizaje profundo clasifica pacientes con dolor torácico mediante rayos X

Por el equipo editorial de MedImaging en español
Actualizado el 20 Jan 2023
Print article
Los investigadores usaron IA para clasificar a los pacientes con dolor en el pecho (Fotografía cortesía de Pexels)
Los investigadores usaron IA para clasificar a los pacientes con dolor en el pecho (Fotografía cortesía de Pexels)

El síndrome de dolor torácico agudo puede implicar opresión, ardor u otras molestias en el pecho o un dolor intenso que se extiende a la espalda, el cuello, los hombros, los brazos o la mandíbula, acompañado de dificultad para respirar. En los EUA, el síndrome de dolor torácico agudo comprende más de siete millones de visitas al departamento de emergencias, lo que lo convierte en una de las quejas más comunes. Sin embargo, menos del 8 % de estos pacientes son diagnosticados con las tres principales causas cardiovasculares del síndrome de dolor torácico agudo: síndrome coronario agudo, embolia pulmonar o disección aórtica. Sin embargo, la naturaleza potencialmente mortal de estas afecciones y la baja especificidad de las pruebas clínicas, como electrocardiogramas y análisis de sangre, dan como resultado un uso significativo de diagnóstico por imágenes cardiovascular y pulmonar, que generalmente termina con resultados negativos. Dado que los departamentos de emergencia luchan por manejar el aumento de pacientes y la escasez de camas de hospital, existe una necesidad vital de clasificar de manera efectiva a los pacientes con un riesgo muy bajo de estas afecciones graves. Ahora, un nuevo estudio ha encontrado que la inteligencia artificial (IA) puede ayudar a mejorar la atención de los pacientes que acuden a los departamentos de emergencia del hospital con dolor torácico agudo.

El aprendizaje profundo es un tipo avanzado de IA que se puede entrenar para buscar imágenes de rayos X para identificar patrones asociados con enfermedades. Para el estudio, los investigadores del Hospital General de Massachusetts (MGH, Boston, MA, EUA) desarrollaron un modelo de aprendizaje profundo de fuente abierta para identificar pacientes con síndrome de dolor torácico agudo que estaban en riesgo a 30 días de síndrome coronario agudo, embolia pulmonar, disección aórtica o mortalidad por todas las causas, según una radiografía de tórax. El estudio evaluó las historias clínicas electrónicas de 5.750 pacientes (edad media 59 años, incluidos 3.329 hombres) que presentaban síndrome de dolor torácico agudo y a los que se les realizó una radiografía de tórax e imágenes cardiovasculares o pulmonares adicionales y/o pruebas de esfuerzo entre enero de 2005 y diciembre de 2015. 

Los investigadores entrenaron el modelo de aprendizaje profundo en 23.005 pacientes para predecir un criterio de valoración compuesto de 30 días de síndrome coronario agudo, embolia pulmonar o disección aórtica y mortalidad por todas las causas basándose en imágenes de rayos X de tórax. El equipo descubrió que la herramienta de aprendizaje profundo mejoró significativamente la predicción de estos resultados adversos más allá de la edad, el sexo y los marcadores clínicos convencionales, como los análisis de sangre del dímero D, y también mantuvo su precisión diagnóstica en función de la edad, el sexo, el origen étnico y la raza. Con un umbral de sensibilidad del 99 %, el modelo logró aplazar las pruebas adicionales en el 14 % de los pacientes frente al 2 % cuando se usaba un modelo que solo incorporaba datos de edad, sexo y biomarcadores. En el futuro, un modelo automatizado de este tipo podría analizar las radiografías de tórax en segundo plano y permitir a los médicos seleccionar a los que más se beneficiarían de la atención médica inmediata, así como ayudar a identificar a los pacientes que pueden ser dados de alta de manera segura del departamento de emergencias.

"Hasta donde sabemos, nuestro modelo de IA de aprendizaje profundo es el primero en utilizar radiografías de tórax para identificar a los pacientes con dolor torácico agudo que necesitan atención médica inmediata", dijo el autor principal del estudio, Márton Kolossváry, MD, Ph. D., investigador de radiología en MGH. "Al analizar la radiografía de tórax inicial de estos pacientes con nuestro modelo de aprendizaje profundo automatizado, pudimos proporcionar predicciones más precisas sobre los resultados de los pacientes en comparación con un modelo que utiliza información sobre la edad, el sexo, la troponina o el dímero D. Nuestros resultados muestran que las radiografías de tórax podrían usarse para ayudar a clasificar a los pacientes con dolor de pecho en el departamento de emergencias".

New
Proveedor de oro
IMRT Thorax Phantom
CIRS Model 002LFC
New
Proveedor de oro
Ultrasound System
FUTUS LE
New
Proveedor de oro
CR Reader
FCR PRIMA II
Advanced Radiotherapy System
uRT-linac 306

Print article
Radcal
Sun Nuclear -    Mirion

Canales

RM

ver canal
Imagen: El software de volumetría cerebral AIRAscore ha recibido la autorización 510 (k) de la FDA (Fotografía cortesía de AIRAmed)

Software de evaluación de resonancia magnética cerebral impulsado por IA permite detección temprana de Alzheimer y demencia

Tradicionalmente, la identificación de la enfermedad de Alzheimer y otras formas de demencia ha dependido principalmente de imágenes por resonancia magnética. Sin embargo, los estudios... Más

Ultrasonido

ver canal
Imagen: La aplicación de ultrasonido mejorado por contraste de súper resolución está disponible en el sistema de ultrasonido EPIQ Elite (Fotografía cortesía de Philips)

Nueva aplicación de ultrasonido con contraste mejorado optimiza la confianza diagnóstica de pacientes con cáncer

Para diagnosticar y tratar el cáncer, es fundamental para los proveedores de atención médica comprender la dinámica del flujo sanguíneo que entra y sale de una lesión... Más

Medicina Nuclear

ver canal
Imagen: Un modelo de IA puede evaluar los tumores cerebrales en PET (Fotografía cortesía de Freepik)

Modelo de IA para imágenes PET determina respuesta del paciente a tratamientos de tumores cerebrales

La evaluación de los cambios en el volumen metabólico tumoral (VMT) mediante exploraciones PET utilizando radiotrazadores específicos como la fluoroetil tirosina (FET) F-18 juega un... Más

Imaginología General

ver canal
Imagen: El software de IA mejora los tiempos de tratamiento de trombectomía endovascular para pacientes con accidente cerebrovascular (Fotografía cortesía de 123RF)

IA detecta OGV a partir de angiografías por TC para mejorar tiempos de tratamiento de la trombectomía endovascular en pacientes con accidente cerebrovascular

La oclusión de grandes vasos (OGV) ocurre cuando se bloquea una arteria clave en el cerebro y se considera una forma particularmente grave de accidente cerebrovascular. Se estima que las OGV representan... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: El arco en C móvil Zenition 70 con detector plano (Fotografía cortesía de Philips)

Mercado mundial de arcos en C fijos y móviles impulsado por aumento de procedimientos quirúrgicos

La evolución de la tecnología del arco en C ha sido realmente notable, marcando el comienzo de la era de los arcos en C móviles y mini. Estos avances han brindado a los cirujanos el... Más
Copyright © 2000-2023 Globetech Media. All rights reserved.