Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




Nueva herramienta de generación de imágenes por IA tiene un futuro prometedor en radiología

Por el equipo editorial de MedImaging en español
Actualizado el 23 Mar 2023
Imagen: Un estudio ha encontrado que el uso de modelos generativos para aumentar y generar datos radiológicos es factible (Fotografía cortesía de la Universidad Charité de Berlín)
Imagen: Un estudio ha encontrado que el uso de modelos generativos para aumentar y generar datos radiológicos es factible (Fotografía cortesía de la Universidad Charité de Berlín)

DALL-E 2, una herramienta de inteligencia artificial (IA) que fue presentada en abril de 2022 por OpenAI, genera nuevas imágenes fotorrealistas u obras de arte basadas en la entrada de texto. Entrenada en miles de millones de pares de texto e imágenes disponibles en Internet, DALL-E 2 cuenta con poderosas capacidades generativas. Ahora, una nueva investigación indica que el modelo de aprendizaje profundo DALL-E 2 para la generación de texto a imagen podría tener un futuro brillante en el cuidado de la salud, particularmente para la generación, ampliación y manipulación de imágenes.

Investigadores de la Universidad Charité de Berlín (Berlín, Alemania) se propusieron examinar si los modelos generativos tienen suficiente conocimiento del dominio médico para proporcionar resultados precisos y útiles y comprender si las capacidades de DALL-E 2 se pueden transferir al dominio médico para crear o aumentar los datos. Analizaron el conocimiento radiológico de DALL-E 2 en la creación y manipulación de imágenes de rayos X, tomografía computarizada (TC), imágenes de resonancia magnética (IRM) y ultrasonido. El equipo de investigación encontró que DALL-E 2 ha aprendido representaciones relevantes de imágenes de rayos X y tiene el potencial para la generación de texto a imagen. En particular, DALL-E 2 logró crear imágenes de rayos X realistas basadas en breves indicaciones de texto, aunque tuvo un desempeño deficiente cuando se presentó con indicaciones específicas de imágenes de tomografía computarizada, resonancia magnética o ultrasonido. Además, aunque pudo reconstruir razonablemente los elementos faltantes en las imágenes radiológicas, su capacidad para generar imágenes con anomalías patológicas era limitada. Además, DALL-E 2 podría hacer mucho más, como generar una radiografía de cuerpo completo usando solo una imagen de rodilla.

Los datos sintéticos generados por DALL-E 2 pueden acelerar significativamente el desarrollo de nuevas herramientas de aprendizaje profundo para radiología al tiempo que resuelven las preocupaciones de privacidad sobre el intercambio de datos entre instituciones. Los investigadores sugieren que las imágenes generadas deben someterse a un control de calidad por parte de expertos en el dominio para minimizar el riesgo de que se integre información incorrecta en un conjunto de datos generado. Según los investigadores, también es necesario realizar más investigaciones para ajustar estos modelos a los datos médicos e integrar la terminología médica a fin de crear modelos poderosos para la generación y la ampliación de datos en la investigación radiológica. DALL-E 2 no está disponible para el público para realizar ajustes, aunque el público puede modificar otros modelos generativos, como Stable Diffusion, y adaptarlos para generar una variedad de imágenes médicas. El estudio indica que la generación de imágenes por IA en radiología tiene un futuro prometedor y una mayor investigación y desarrollo podría allanar el camino para nuevas herramientas interesantes para radiólogos y profesionales médicos.

Enlaces relacionados:
Universidad Charité de Berlín

Post-Processing Imaging System
DynaCAD Prostate
MRI System
nanoScan MRI 3T/7T
Mammo DR Retrofit Solution
DR Retrofit Mammography
Mobile X-Ray System
K4W

Canales

Ultrasonido

ver canal
Imagen: el parche de ultrasonido realiza simultáneamente imágenes de ultrasonido y medición de la presión arterial de ambas arterias carótidas (Fotografía cortesía de KIST)

Parche de ultrasonido desechable supera el rendimiento de los dispositivos existentes

Los dispositivos portátiles de ultrasonido se utilizan ampliamente en el diagnóstico, el monitoreo de la rehabilitación y la telemedicina. Sin embargo, la mayoría de los modelos... Más

Medicina Nuclear

ver canal
Imagen: el Dr. Glenn Bauman, científico de LHSCRI, posa frente al escáner PET (Foto cortesía de LHSCRI).

Nueva solución de imagen mejora la supervivencia de los pacientes con cáncer de próstata recurrente

La detección del cáncer de próstata recurrente sigue siendo uno de los mayores desafíos en oncología, ya que los métodos de imagen estándar, como las g... Más

Imaginología General

ver canal
Imagen: Concepto de los SCNP fotosensibles (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste

Las tecnologías de imagen médica enfrentan desafíos constantes para capturar vistas precisas y detalladas de los procesos internos, especialmente en enfermedades como el cáncer,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.