Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.

Nueva herramienta de generación de imágenes por IA tiene un futuro prometedor en radiología

Por el equipo editorial de MedImaging en español
Actualizado el 23 Mar 2023
Print article
Imagen: Un estudio ha encontrado que el uso de modelos generativos para aumentar y generar datos radiológicos es factible (Fotografía cortesía de la Universidad Charité de Berlín)
Imagen: Un estudio ha encontrado que el uso de modelos generativos para aumentar y generar datos radiológicos es factible (Fotografía cortesía de la Universidad Charité de Berlín)

DALL-E 2, una herramienta de inteligencia artificial (IA) que fue presentada en abril de 2022 por OpenAI, genera nuevas imágenes fotorrealistas u obras de arte basadas en la entrada de texto. Entrenada en miles de millones de pares de texto e imágenes disponibles en Internet, DALL-E 2 cuenta con poderosas capacidades generativas. Ahora, una nueva investigación indica que el modelo de aprendizaje profundo DALL-E 2 para la generación de texto a imagen podría tener un futuro brillante en el cuidado de la salud, particularmente para la generación, ampliación y manipulación de imágenes.

Investigadores de la Universidad Charité de Berlín (Berlín, Alemania) se propusieron examinar si los modelos generativos tienen suficiente conocimiento del dominio médico para proporcionar resultados precisos y útiles y comprender si las capacidades de DALL-E 2 se pueden transferir al dominio médico para crear o aumentar los datos. Analizaron el conocimiento radiológico de DALL-E 2 en la creación y manipulación de imágenes de rayos X, tomografía computarizada (TC), imágenes de resonancia magnética (IRM) y ultrasonido. El equipo de investigación encontró que DALL-E 2 ha aprendido representaciones relevantes de imágenes de rayos X y tiene el potencial para la generación de texto a imagen. En particular, DALL-E 2 logró crear imágenes de rayos X realistas basadas en breves indicaciones de texto, aunque tuvo un desempeño deficiente cuando se presentó con indicaciones específicas de imágenes de tomografía computarizada, resonancia magnética o ultrasonido. Además, aunque pudo reconstruir razonablemente los elementos faltantes en las imágenes radiológicas, su capacidad para generar imágenes con anomalías patológicas era limitada. Además, DALL-E 2 podría hacer mucho más, como generar una radiografía de cuerpo completo usando solo una imagen de rodilla.

Los datos sintéticos generados por DALL-E 2 pueden acelerar significativamente el desarrollo de nuevas herramientas de aprendizaje profundo para radiología al tiempo que resuelven las preocupaciones de privacidad sobre el intercambio de datos entre instituciones. Los investigadores sugieren que las imágenes generadas deben someterse a un control de calidad por parte de expertos en el dominio para minimizar el riesgo de que se integre información incorrecta en un conjunto de datos generado. Según los investigadores, también es necesario realizar más investigaciones para ajustar estos modelos a los datos médicos e integrar la terminología médica a fin de crear modelos poderosos para la generación y la ampliación de datos en la investigación radiológica. DALL-E 2 no está disponible para el público para realizar ajustes, aunque el público puede modificar otros modelos generativos, como Stable Diffusion, y adaptarlos para generar una variedad de imágenes médicas. El estudio indica que la generación de imágenes por IA en radiología tiene un futuro prometedor y una mayor investigación y desarrollo podría allanar el camino para nuevas herramientas interesantes para radiólogos y profesionales médicos.

Enlaces relacionados:
Universidad Charité de Berlín

Proveedor de oro
Ultrasound Phantom
Multi-Purpose Multi-Tissue Ultrasound Phantom - Model 040GSE
New
High-Frequency X-Ray Generator
Battery X-Ray Generator
New
Ceiling Suspension Tubestand
Lem Plus iC
New
Image Sharing Platform
CareRad

Print article
FIME - Informa
Radcal

Canales

RM

ver canal
Imagen: La IA Ezra Flash ha recibido la autorización 510 (k) de la FDA, lo que permite el despliegue de la primera resonancia magnética del cuerpo completo de 30 minutos del mundo (Fotografía cortesía de Ezra)

Primera resonancia magnética de cuerpo completo de 30 minutos del mundo ofrece diagnóstico de cáncer rápido, preciso y asequible

Una solución de inteligencia artificial (IA) de vanguardia mejora la calidad de la imagen de RM, allanando el camino para una reducción en el tiempo de escaneo y, en consecuencia, el costo... Más

Ultrasonido

ver canal
Imagen: Unir microburbujas a los macrófagos puede crear imágenes de seguimiento sensibles y de alta resolución útiles para el diagnóstico de enfermedades (Fotografía cortesía del Instituto de Tecnología de Georgia)

Ultrasonido puede obtener imágenes de células inmunitarias mejoradas con microburbujas para diagnosticar cáncer en etapa temprana

Los macrófagos, un tipo de glóbulo blanco, protegen el cuerpo humano al rodear y consumir partículas extrañas como bacterias, virus y células muertas. En particular,... Más

Medicina Nuclear

ver canal
Imagen: Un nuevo método de imagen ofrece potencial para diagnosticar, estadificar y tratar múltiples tipos de cáncer (Fotografía cortesía de SNMMI)

Nuevo método de imagen es superior para diagnósticar múltiples tipos de cáncer

Los fibroblastos asociados con el cáncer juegan un papel importante en el desarrollo, la migración y la progresión del tumor. Un subconjunto de estos fibroblastos expresa la proteína... Más

Imaginología General

ver canal
Imagen: PET/MRI puede reducir a la mitad los tiempos de escaneo de cáncer de mama (Fotografía cortesía de Freepik)

Protocolo PET/MRI rápido reduce a la mitad tiempos de exploración para cáncer de mama

La estadificación precisa es esencial para las mujeres recién diagnosticadas con cáncer de mama, y la PET/MRI ha comenzado a ganar terreno como método para la estadificación... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: Se espera que el mercado global de soluciones de imágenes médicas habilitadas para IA alcance los 1.836 millones de dólares en 2032 (Fotografía cortesía de Freepik)

Mercado mundial de soluciones de imágenes médicas habilitadas por IA impulsado por necesidad de detección temprana de enfermedades

El mercado de soluciones de imágenes médicas habilitadas por IA se encuentra actualmente en sus etapas de desarrollo, siguiendo el importante papel de las herramientas basadas en IA para... Más
Copyright © 2000-2023 Globetech Media. All rights reserved.