Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




La inteligencia artificial acorta tiempos de lectura de radiólogos para radiografías de tórax

Por el equipo editorial de MedImaging en español
Actualizado el 16 May 2023
Imagen: La IA puede afectar los tiempos de lectura de los radiólogos para las radiografías de tórax (Fotografía cortesía de Freepik)
Imagen: La IA puede afectar los tiempos de lectura de los radiólogos para las radiografías de tórax (Fotografía cortesía de Freepik)

La Inteligencia Artificial (IA) se ha convertido en una herramienta integral para la investigación en radiología. Con la disponibilidad del software comercial de IA, se ha incrementado el énfasis en demostrar la efectividad de la IA en aplicaciones médicas prácticas debido a la demanda clínica. La mayor parte de la investigación se ha centrado en la influencia de la IA en la atención al paciente y en los procesos de toma de decisiones de los médicos, así como en la obtención de resultados de diagnóstico fiables a través de la IA. Los radiólogos están interesados en determinar si la ayuda de la IA puede priorizar las imágenes para su revisión, reducir los casos pasados por alto o afectar los tiempos de lectura. Ha habido un interés particular en determinar cómo el uso de IA durante el análisis de radiografías de tórax puede influir en la carga de trabajo de los radiólogos. Ahora, un estudio observacional prospectivo ha encontrado que el uso de IA afecta los tiempos de interpretación de las radiografías de tórax entre los radiólogos y puede reducir los tiempos de lectura.

Para el estudio, los investigadores de la Universidad de Yonsei (Seúl, Corea del Sur) reclutaron a 11 radiólogos que aceptaron permitir el registro de sus tiempos de interpretación para un total de 18.680 radiografías de tórax desde septiembre hasta diciembre de 2021. El tiempo de lectura se definió como el lapso desde que las radiografías de tórax se abrieron hasta cuando fueron transcritas por el mismo radiólogo. Con el software comercial de IA implementado para todas las radiografías de tórax, los radiólogos podían consultar los resultados de la IA durante dos meses (período asistido por IA). En cambio, durante los otros dos meses, a los radiólogos se les impidió automáticamente acceder a los resultados de la IA (período sin asistencia de IA).

El estudio encontró que los tiempos totales de lectura se redujeron significativamente con el uso de IA, en comparación con sin ella. Cuando la IA no detectó anomalías, los tiempos de lectura fueron más cortos con el uso de IA. Sin embargo, si la IA detectaba alguna anomalía, los tiempos de lectura no se veían afectados por el uso de la IA. A medida que aumentaron los puntajes de anormalidad, también lo hicieron los tiempos de lectura, y se observó un aumento más notable con el uso de IA.

En conclusión, el estudio observacional prospectivo en un entorno clínico del mundo real reveló que la disponibilidad de los resultados de la IA influyó en los tiempos de lectura de las radiografías de tórax entre los radiólogos. En general, cuando los radiólogos consultaron a la IA, especialmente para radiografías de tórax normales, los tiempos de lectura disminuyeron; sin embargo, las anomalías identificadas por la IA en las radiografías de tórax parecían aumentar los tiempos de lectura. Por lo tanto, la IA puede mejorar la eficiencia de los radiólogos al ahorrar tiempo dedicado a las imágenes normales y permitirles dedicar este tiempo a las radiografías de tórax con anomalías detectadas.

Enlaces relacionados:
Universidad de Yonsei

Half Apron
Demi
Ultrasound Needle Guidance System
SonoSite L25
Mammography System (Analog)
MAM VENUS
Post-Processing Imaging System
DynaCAD Prostate

Canales

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: la herramienta de diagnóstico podría mejorar las decisiones de diagnóstico y tratamiento para pacientes con infecciones pulmonares crónicas (foto cortesía de SNMMI)

Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar

Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más

Imaginología General

ver canal
Imagen: un modelo de aprendizaje profundo basado en parches con un conjunto de datos de entrenamiento limitado para la segmentación de tumores hepáticos en TC con contraste (Yang et al. (2025), IEEE Access, 10.1109/Access.2025.3570728)

Modelo de IA segmenta con precisión tumores hepáticos a partir de tomografías computarizadas

El cáncer de hígado es el sexto tipo de cáncer más común en el mundo y una de las principales causas de muerte por cáncer. La segmentación precisa de los tumores hepáticos es crucial para el diagnóstico... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.