Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de aprendizaje profundo predice con precisión la mortalidad por neumonía en radiografías de tórax

Por el equipo editorial de MedImaging en español
Actualizado el 27 Jun 2023
Imagen: El aprendizaje profundo podría guiar mejor la toma de decisiones clínicas en pacientes con neumonía (Fotografía cortesía de Freepik)
Imagen: El aprendizaje profundo podría guiar mejor la toma de decisiones clínicas en pacientes con neumonía (Fotografía cortesía de Freepik)

Las radiografías de tórax son una herramienta diagnóstica crucial para la neumonía adquirida en la comunidad (NAC), a pesar de su valor pronóstico incierto. Ahora, un modelo basado en aprendizaje profundo (DL) que utiliza radiografías de tórax iniciales ha demostrado potencial para predecir con precisión la mortalidad a los 30 días, superando la herramienta de predicción de riesgo bien establecida, la puntuación CURB-65.

Investigadores de la Universidad Nacional de Seúl (Seúl, Corea) crearon un modelo de DL utilizando datos de 7.105 pacientes de una institución, recopilados entre marzo de 2013 y diciembre de 2019. Estos datos se usaron para formar conjuntos de entrenamiento, validación y pruebas internas para predecir el riesgo. de mortalidad por todas las causas dentro de los 30 días posteriores al diagnóstico de NAC utilizando las radiografías de tórax iniciales de los pacientes. Luego, los investigadores evaluaron el modelo de DL en dos cohortes de prueba: 947 pacientes diagnosticados con NAC durante visitas al departamento de emergencias en la institución original entre enero de 2020 y diciembre de 2020, y 848 pacientes adicionales de dos instituciones separadas entre enero de 2020 y diciembre de 2020, y marzo de 2019 a Octubre de 2021. El estudio comparó el desempeño del modelo de DL con una puntuación de riesgo basada en la confusión, el nivel de urea, la frecuencia respiratoria, la presión arterial y la edad ≥ 65 años (puntuación CURB-65).

Los resultados demostraron que el modelo de DL, utilizando radiografías de tórax iniciales, podía predecir la mortalidad por todas las causas a los 30 días en pacientes con NAC con un área bajo la curva (AUC) entre 0,77 y 0,80 en las diferentes cohortes de prueba. Además, el modelo demostró una mayor especificidad (rango del 61 % al 69 %) que la puntuación CURB-65 (rango del 44 % al 58 %) con el mismo nivel de sensibilidad. Dados estos resultados, los investigadores sugieren que este modelo basado en DL podría ayudar mejor a los médicos en la toma de decisiones cuando trata pacientes con NAC.

“El modelo de aprendizaje profundo (DL) puede guiar la toma de decisiones clínicas en el manejo de pacientes con NAC mediante la identificación de pacientes de alto riesgo que requieren hospitalización y tratamiento intensivo”, dijo Eui Jin Hwang, MD, PhD, del Departamento de Radiología de Facultad de Medicina de la Universidad Nacional de Seúl.

Enlaces relacionados:
Universidad Nacional de Seúl  

Portable Color Doppler Ultrasound System
S5000
New
Biopsy Software
Affirm® Contrast
Ultrasound Table
Women’s Ultrasound EA Table
New
Ultrasound Needle Guidance System
SonoSite L25

Canales

RM

ver canal
Imagen: los investigadores utilizaron RM y pantalones inspirados en la NASA para mejorar las pruebas de esfuerzo y revelar problemas cardíacos ocultos (foto cortesía de UTA)

Nueva técnica de resonancia magnética revela problemas cardíacos ocultos

Las pruebas de esfuerzo tradicionales, realizadas en una máquina de resonancia magnética (RM), requieren que los pacientes permanezcan acostados, una posición que mejora artificialmente... Más

Ultrasonido

ver canal
Imagen: el ultrasonido focalizado puede detener el crecimiento de lesiones cerebrales debilitantes (Foto cortesía de Nature Biomedical Engineering; doi.org/10.1038/s41551-025-01390-z)

Nueva técnica sin incisiones detiene el crecimiento de lesiones cerebrales debilitantes

Las malformaciones cavernosas cerebrales (MCC), también conocidas como cavernomas, son agrupaciones anómalas de vasos sanguíneos que pueden formarse en el cerebro, la médula... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

Imaginología General

ver canal
Imagen: El cinturón de TC por ultrasonido podría facilitar el seguimiento de pacientes con afecciones cardíacas y pulmonares (foto cortesía de la Universidad de Bath)

Dispositivo portátil pionero ofrece una alternativa revolucionaria a las tomografías computarizadas

Actualmente, los pacientes con afecciones como insuficiencia cardíaca, neumonía o dificultad respiratoria suelen requerir múltiples procedimientos de diagnóstico por imagen... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.